Lupa

Search the repository Help

A- | A+ | Print
Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


11 - 20 / 26
First pagePrevious page123Next pageLast page
11.
Semiregular automorphisms of vertex-transitive graphs of certain valencies
Edward Dobson, Aleksander Malnič, Dragan Marušič, Lewis A. Nowitz, 2007, original scientific article

Abstract: It is shown that a vertex-transitive graph of valency ▫$p+1$▫, ▫$p$▫ a prime, admitting a transitive action of a ▫$\{2,p\}$▫-group, has a non-identity semiregular automorphism. As a consequence, it is proved that a quartic vertex-transitive graph has a non-identity semiregular automorphism, thus giving a partial affirmative answer to the conjecture that all vertex-transitive graphs have such an automorphism and, more generally, that all 2-closed transitive permutation groups contain such an element (see [D. Marušic, On vertex symmetric digraphs, Discrete Math. 36 (1981) 69-81; P.J. Cameron (Ed.), Problems from the Fifteenth British Combinatorial Conference, Discrete Math. 167/168 (1997) 605-615]).
Keywords: mathematics, graph theory, transitive permutation group, 2-closed group, semiregular automorphism, vertex-transitive graph
Published in RUP: 03.04.2017; Views: 2407; Downloads: 83
URL Link to full text

12.
Semisymmetric elementary abelian covers of the Möbius-Kantor graph
Aleksander Malnič, Dragan Marušič, Štefko Miklavič, Primož Potočnik, 2007, original scientific article

Abstract: Let ▫$\wp_N : \tilde{X} \to X$▫ be a regular covering projection of connected graphs with the group of covering transformations isomorphic to ▫$N$▫. If ▫$N$▫ is an elementary abelian ▫$p$▫-group, then the projection ▫$\wp_N$▫ is called ▫$p$▫-elementary abelian. The projection ▫$\wp_N$▫ is vertex-transitive (edge-transitive) if some vertex-transitive (edge-transitive) subgroup of Aut ▫$X$▫ lifts along ▫$\wp_N$▫, and semisymmetric if it is edge- but not vertex-transitive. The projection ▫$\wp_N$▫ is minimal semisymmetric if ▫$\wp_N$▫ cannot be written as a composition ▫$\wp_N = \wp \circ \wp_M$▫ of two (nontrivial) regular covering projections, where ▫$\pw_M$▫ is semisymmetric. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields (see [A. Malnic, D. Marušic, P. Potocnik, Elementary abelian covers of graphs, J. Algebraic Combin. 20 (2004) 71-97]). In this paper, all pairwise nonisomorphic minimal semisymmetric elementary abelian regular covering projections of the Möbius-Kantor graph, the Generalized Petersen graph GP(8,3), are constructed. No such covers exist for ▫$p=2$▫. Otherwise, the number of such covering projections is equal to ▫$(p-1)/4$▫ and ▫$1+(p-1)/4$▫ in cases ▫$p \equiv 5,9,13,17,21 \pmod{24}$▫ and ▫$p \equiv 1 \pmod{24}$▫, respectively, and to ▫$(p+1)/4$▫ and ▫$1+(p+1)/4$▫ in cases ▫$p \equiv 3,7,11,15,23 \pmod{24}$▫ and ▫$p \equiv 19 \pmod{24}$▫, respectively. For each such covering projection the voltage rules generating the corresponding covers are displayed explicitly.
Keywords: mathematics, graph theory, graph, covering projection, lifting automorphisms, homology group, group representation, matrix group, invariant subspaces
Published in RUP: 03.04.2017; Views: 2330; Downloads: 86
URL Link to full text

13.
14.
Lower bounds on the simultaneous conjugacy problem in the symmetric group
Rok Požar, Andrej Brodnik, Aleksander Malnič, 2015, published scientific conference contribution abstract

Keywords: communication complexity, lower bound, symmetric group
Published in RUP: 08.08.2016; Views: 2424; Downloads: 42
URL Link to full text

15.
On the split structure of lifted groups
Aleksander Malnič, Rok Požar, 2016, original scientific article

Abstract: Let ▫$\wp \colon \tilde{X} \to X$▫ be a regular covering projection of connected graphs with the group of covering transformations ▫$\rm{CT}_\wp$▫ being abelian. Assuming that a group of automorphisms ▫$G \le \rm{Aut} X$▫ lifts along $\wp$ to a group ▫$\tilde{G} \le \rm{Aut} \tilde{X}$▫, the problem whether the corresponding exact sequence ▫$\rm{id} \to \rm{CT}_\wp \to \tilde{G} \to G \to \rm{id}$▫ splits is analyzed in detail in terms of a Cayley voltage assignment that reconstructs the projection up to equivalence. In the above combinatorial setting the extension is given only implicitly: neither ▫$\tilde{G}$▫ nor the action ▫$G\to \rm{Aut} \rm{CT}_\wp$▫ nor a 2-cocycle ▫$G \times G \to \rm{CT}_\wp$▫, are given. Explicitly constructing the cover ▫$\tilde{X}$▫ together with ▫$\rm{CT}_\wp$▫ and ▫$\tilde{G}$▫ as permutation groups on ▫$\tilde{X}$▫ is time and space consuming whenever ▫$\rm{CT}_\wp$▫ is large; thus, using the implemented algorithms (for instance, HasComplement in Magma) is far from optimal. Instead, we show that the minimal required information about the action and the 2-cocycle can be effectively decoded directly from voltages (without explicitly constructing the cover and the lifted group); one could then use the standard method by reducing the problem to solving a linear system of equations over the integers. However, along these lines we here take a slightly different approach which even does not require any knowledge of cohomology. Time and space complexity are formally analyzed whenever ▫$\rm{CT}_\wp$▫ is elementary abelian.
Keywords: algorithm, abelian cover, Cayley voltages, covering projection, graph, group extension, group presentation, lifting automorphisms, linear systems over the integers, semidirect product
Published in RUP: 15.10.2015; Views: 2675; Downloads: 157
.pdf Full text (422,56 KB)

16.
Hamilton cycles in (2, odd, 3)-Cayley graphs
Henry Glover, Klavdija Kutnar, Aleksander Malnič, Dragan Marušič, 2012, original scientific article

Abstract: In 1969, Lovász asked if every finite, connected vertex-transitive graph has a Hamilton path. In spite of its easy formulation, no major breakthrough has been achieved thus far, and the problem is now commonly accepted to be very hard. The same holds for the special subclass of Cayley graphs where the existence of Hamilton cycles has been conjectured. In 2007, Glover and Marušič proved that a cubic Cayley graph on a finite ▫$(2, s, 3)$▫-generated group ▫$G = \langle a, x| a^2 = x^s = (ax)^3 = 1, \dots \rangle$▫ has a Hamilton path when ▫$|G|$▫ is congruent to 0 modulo 4, and has a Hamilton cycle when ▫$|G|$▫ is congruent to 2 modulo 4. The Hamilton cycle was constructed, combining the theory of Cayley maps with classical results on cyclic stability in cubic graphs, as the contractible boundary of a tree of faces in the corresponding Cayley map. With a generalization of these methods, Glover, Kutnar and Marušič in 2009 resolved the case when, apart from ▫$|G|$▫, also ▫$s$▫ is congruent to 0 modulo 4. In this article, with a further extension of the above "tree of faces" approach, a Hamilton cycle is shown to exist whenever ▫$|G|$▫ is congruent to 0 modulo 4 and s is odd. This leaves ▫$|G|$▫ congruent to 0 modulo 4 with s congruent to 2 modulo 4 as the only remaining open case. In this last case, however, the "tree of faces" approach cannot be applied, and so entirely different techniques will have to be introduced if one is to complete the proof of the existence of Hamilton cycles in cubic Cayley graphs arising from finite ▫$(2, s, 3)$▫-generated groups.
Keywords: Cayley graph, Hamilton cycle, arc-transitive graph, 1-regular action, automorphism group
Published in RUP: 15.10.2013; Views: 2918; Downloads: 133
URL Link to full text

17.
On 2-fold covers of graphs
Yan-Quan Feng, Klavdija Kutnar, Aleksander Malnič, Dragan Marušič, 2008, original scientific article

Abstract: A regular covering projection ▫$\wp : \widetilde{X} \to X$▫ of connected graphs is ▫$G$▫-admissible if ▫$G$▫ lifts along ▫$\wp$▫. Denote by ▫$\tilde{G}$▫ the lifted group, and let CT▫$(\wp)$▫ be the group of covering transformations. The projection is called ▫$G$▫-split whenever the extension ▫{$\mathrm{CT}}(\wp) \to \tilde{G} \to G$▫ splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that ▫$G$▫ is transitive on ▫$X$▫, a ▫$G$▫-split cover is said to be ▫$G$▫-split-transitive if all complements ▫$\tilde{G} \cong G$▫ of CT▫$(\wp)$▫ within ▫$\tilde{G}$▫ are transitive on ▫$\widetilde{X}$▫; it is said to be ▫$G$▫-split-sectional whenever for each complement ▫$\tilde{G}$▫ there exists a ▫$\tilde{G}$▫-invariant section of ▫$\wp$▫; and it is called ▫$G$▫-split-mixed otherwise. It is shown, when ▫$G$▫ is an arc-transitive group, split-sectional and split-mixed 2-covers lead to canonical double covers. Split-transitive covers, however, are considerably more difficult to analyze. For cubic symmetric graphs split 2-cover are necessarily canonical double covers (that is, no ▫$G$▫-split-transitive 2-covers exist) when ▫$G$▫ is 1-regular or 4-regular. In all other cases, that is, if ▫$G$▫ is ▫$s$▫-regular, ▫$s=2,3$▫ or ▫$5$▫, a necessary and sufficient condition for the existence of a transitive complement ▫$\tilde{G}$▫ is given, and moreover, an infinite family of split-transitive 2-covers based on the alternating groups of the form ▫$A_{12k+10}$▫ is constructed. Finally, chains of consecutive 2-covers, along which an arc-transitive group ▫$G$▫ has successive lifts, are also considered. It is proved that in such a chain, at most two projections can be split. Further, it is shown that, in the context of cubic symmetric graphs, if exactly two of them are split, then one is split-transitive and the other one is either split-sectional or split-mixed.
Keywords: graph theory, graphs, cubic graphs, symmetric graphs, ▫$s$▫-regular group, regular covering projection
Published in RUP: 15.10.2013; Views: 3533; Downloads: 34
URL Link to full text

18.
Hamiltonicity of cubic Cayley graphs
Dragan Marušič, Henry Glover, Klavdija Kutnar, Aleksander Malnič, 2012, published scientific conference contribution abstract (invited lecture)

Keywords: Cayley graph, Hamilton path, Hamilton cycle, arc-transitive graph, Cayley map
Published in RUP: 15.10.2013; Views: 2936; Downloads: 62
URL Link to full text

19.
Covering space techniques in graph theory
Aleksander Malnič, 2010, published scientific conference contribution abstract

Keywords: graph theory, graph covers, lifting automorphisms
Published in RUP: 15.10.2013; Views: 3649; Downloads: 87
URL Link to full text

20.
The strongly distance-balanced property of the generalized Petersen graphs
Klavdija Kutnar, Aleksander Malnič, Dragan Marušič, Štefko Miklavič, 2009, original scientific article

Abstract: A graph ▫$X$▫ is said to be strongly distance-balanced whenever for any edge ▫$uv$▫ of ▫$X$▫ and any positive integer ▫$i$▫, the number of vertices at distance ▫$i$▫ from ▫$u$▫ and at distance ▫$i + 1$▫ from ▫$v$▫ is equal to the number of vertices at distance ▫$i + 1$▫ from ▫$u$▫ and at distance ▫$i$▫ from ▫$v$▫. It is proven that for any integers ▫$k \ge 2$▫ and ▫$n \ge k^2 + 4k + 1$▫, the generalized Petersen graph GP▫$(n, k)$▫ is not strongly distance-balanced.
Keywords: graph, strongy distance-balanced, generalized Petersen graph
Published in RUP: 15.10.2013; Views: 2994; Downloads: 132
.pdf Full text (146,23 KB)

Search done in 0 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica