# Search the repository

 Query: search in TitleAuthorAbstractKeywordsFull textYear of publishing ANDORAND NOT search in TitleAuthorAbstractKeywordsFull textYear of publishing ANDORAND NOT search in TitleAuthorAbstractKeywordsFull textYear of publishing ANDORAND NOT search in TitleAuthorAbstractKeywordsFull textYear of publishing Work type: All work types Habilitation (m4) Specialist thesis (m3) High school thesis (m6) Bachelor work * (dip) Master disertations * (mag) Doctorate disertations * (dok) Research Data or Corpuses (data) * old and bolonia study programme Language: All languagesSlovenianEnglishGermanCroatianSerbianBosnianBulgarianCzechFinnishFrenchGerman (Austria)HungarianItalianJapaneseLithuanianNorwegianPolishRussianSerbian (cyrillic)SlovakSpanishSwedishTurkishUnknown Search in: RUP    FAMNIT - Faculty of Mathematics, Science and Information Technologies    FHŠ - Faculty of Humanities    FM - Faculty of Management    FTŠ Turistica - Turistica – College of Tourism Portorož    FVZ - Faculty of Health Sciences    IAM - Andrej Marušič Institute    PEF - Faculty of Education    UPR - University of PrimorskaCOBISS    Fakulteta za humanistične študije, Koper    Fakulteta za management Koper in Pedagoška fakulteta Koper    Fakulteta za vede o zdravju, Izola    Knjižnica za tehniko, medicino in naravoslovje, Koper    Turistica, Portorož    Znanstveno-raziskovalno središče Koper Options: Show only hits with full text Reset

 1 - 2 / 21 1.A note on domination and independence-domination numbers of graphsMartin Milanič, 2013, published scientific conference contributionAbstract: Vizing's conjecture is true for graphs ▫$G$▫ satisfying ▫$\gamma^i(G) = \gamma(G)$▫, where ▫$\gamma(G)$▫ is the domination number of a graph ▫$G$▫ and ▫$\gamma^i(G)$▫ is the independence-domination number of ▫$G$▫, that is, the maximum, over all independent sets ▫$I$▫ in ▫$G$▫, of the minimum number of vertices needed to dominate ▫$I$▫. The equality ▫$\gamma^i(G) = \gamma(G)$▫ is known to hold for all chordal graphs and for chordless cycles of length ▫$0 \pmod{3}$▫. We prove some results related to graphs for which the above equality holds. More specifically, we show that the problems of determining whether ▫$\gamma^i(G) = \gamma(G) = 2$▫ and of verifying whether ▫$\gamma^i(G) \ge 2$▫ are NP-complete, even if ▫$G$▫ is weakly chordal. We also initiate the study of the equality ▫$\gamma^i = \gamma$▫ in the context of hereditary graph classes and exhibit two infinite families of graphs for which ▫$\gamma^i < \gamma$▫.Found in: ključnih besedahSummary of found: ...domination number, independence-domination number, weakly chordal graph, NP-completeness, hereditary graph class, IDD-perfect graph... Keywords: Vizing's conjecture, domination number, independence-domination number, weakly chordal graph, NP-completeness, hereditary graph class, IDD-perfect graphPublished: 15.10.2013; Views: 1345; Downloads: 73 Full text (0,00 KB) 2.The university timetabling problem - complexity and an integer linear programming formulationNevena Mitrović, 2017, master's thesisFound in: ključnih besedahSummary of found: ...university timetabling, NP-completeness, integer linear programming, mathematical modelling... Keywords: university timetabling, NP-completeness, integer linear programming, mathematical modellingPublished: 09.11.2017; Views: 552; Downloads: 17 Full text (0,00 KB)This document has more files! More...
Search done in 0 sec.