Lupa

Search the repository Help

A- | A+ | Print
Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
A note on domination and independence-domination numbers of graphs
Martin Milanič, 2013, published scientific conference contribution

Abstract: Vizing's conjecture is true for graphs ▫$G$▫ satisfying ▫$\gamma^i(G) = \gamma(G)$▫, where ▫$\gamma(G)$▫ is the domination number of a graph ▫$G$▫ and ▫$\gamma^i(G)$▫ is the independence-domination number of ▫$G$▫, that is, the maximum, over all independent sets ▫$I$▫ in ▫$G$▫, of the minimum number of vertices needed to dominate ▫$I$▫. The equality ▫$\gamma^i(G) = \gamma(G)$▫ is known to hold for all chordal graphs and for chordless cycles of length ▫$0 \pmod{3}$▫. We prove some results related to graphs for which the above equality holds. More specifically, we show that the problems of determining whether ▫$\gamma^i(G) = \gamma(G) = 2$▫ and of verifying whether ▫$\gamma^i(G) \ge 2$▫ are NP-complete, even if ▫$G$▫ is weakly chordal. We also initiate the study of the equality ▫$\gamma^i = \gamma$▫ in the context of hereditary graph classes and exhibit two infinite families of graphs for which ▫$\gamma^i < \gamma$▫.
Found in: ključnih besedah
Summary of found: ...= \gamma(G)$▫, where ▫$\gamma(G)$▫ is the domination number of a graph ▫$G$▫ and ▫$\gamma^i(G)$▫ is...
Keywords: Vizing's conjecture, domination number, independence-domination number, weakly chordal graph, NP-completeness, hereditary graph class, IDD-perfect graph
Published: 15.10.2013; Views: 1466; Downloads: 77
URL Full text (0,00 KB)

Search done in 0 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica