Lupa

Search the repository Help

A- | A+ | Print
Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
On quartic half-arc-transitive metacirculants
Dragan Marušič, Primož Šparl, 2008, original scientific article

Abstract: Following Alspach and Parsons, a metacirculant graph is a graph admitting a transitive group generated by two automorphisms ▫$\rho$▫ and ▫$\sigma$▫, where ▫$\rho$▫ is ▫$(m,n)$▫-semiregular for some integers ▫$m \ge 1$▫, ▫$n \ge 2▫$, and where ▫$\sigma$▫ normalizes ▫$\rho$▫, cyclically permuting the orbits of ▫$\rho$▫ in such a way that ▫$\sigma^m$▫ has at least one fixed vertex. A half-arc-transitive graph is a vertex- and edge- but not arc-transitive graph. In this article quartic half-arc-transitive metacirculants are explored and their connection to the so called tightly attached quartic half-arc-transitive graphs is explored. It is shown that there are three essentially different possibilities for a quartic half-arc-transitive metacirculant which is not tightly attached to exist. These graphs are extensively studied and some infinite families of such graphs are constructed.
Found in: ključnih besedah
Summary of found: ...Following Alspach and Parsons, a metacirculant graph is a graph admitting a transitive...
Keywords: mathematics, graph theory, metacirculant graph, half-arc-transitive graph, tightly attached, automorphism group
Published: 15.10.2013; Views: 1700; Downloads: 62
URL Full text (0,00 KB)

Search done in 0 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica