# Search the repository

 Query: search in TitleAuthorAbstractKeywordsFull textYear of publishing ANDORAND NOT search in TitleAuthorAbstractKeywordsFull textYear of publishing ANDORAND NOT search in TitleAuthorAbstractKeywordsFull textYear of publishing ANDORAND NOT search in TitleAuthorAbstractKeywordsFull textYear of publishing Work type: All work types Habilitation (m4) Specialist thesis (m3) High school thesis (m6) Bachelor work * (dip) Master disertations * (mag) Doctorate disertations * (dok) Research Data or Corpuses (data) * old and bolonia study programme Language: All languagesSlovenianEnglishGermanCroatianSerbianBosnianBulgarianCzechFinnishFrenchGerman (Austria)HungarianItalianJapaneseLithuanianNorwegianPolishRussianSerbian (cyrillic)SlovakSpanishSwedishTurkishUnknown Search in: RUP    FAMNIT - Faculty of Mathematics, Science and Information Technologies    FHŠ - Faculty of Humanities    FM - Faculty of Management    FTŠ Turistica - Turistica – College of Tourism Portorož    FVZ - Faculty of Health Sciences    IAM - Andrej Marušič Institute    PEF - Faculty of Education    UPR - University of PrimorskaCOBISS    Fakulteta za humanistične študije, Koper    Fakulteta za management Koper in Pedagoška fakulteta Koper    Fakulteta za vede o zdravju, Izola    Knjižnica za tehniko, medicino in naravoslovje, Koper    Turistica, Portorož    Znanstveno-raziskovalno središče Koper Options: Show only hits with full text Reset

 1 - 1 / 11 1.The Terwilliger algebra of a distance-regular graph of negative typeŠtefko Miklavič, 2009, original scientific articleAbstract: Let ▫$\Gamma$▫ denote a distance-regular graph with diameter ▫$D \ge 3$▫. Assume ▫$\Gamma$▫ has classical parameters ▫$(D,b,\alpha,\beta)▫$ with ▫$b < -1$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X(\mathbb{C})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let $A^\ast \in {\mathrm{Mat}}_X(\mathbb{C})$ denote the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ${\mathrm{Mat}}_X(\mathbb{C})$ generated by ▫$A,A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exist exactly two irreducible ▫$T$▫-modules with endpoint 1; their dimensions are ▫$D$▫ and ▫$2D-2$▫. For these ▫$T$▫-modules we display a basis consisting of eigenvectors for ▫$A^\ast$▫, and for each basis we give the action of ▫$A$▫.Found in: ključnih besedahKeywords: distance-regular graph, negative type, Terwilliger algebraPublished: 15.10.2013; Views: 1679; Downloads: 77 Full text (0,00 KB)
Search done in 0 sec.
Back to top