Lupa

Search the repository Help

A- | A+ | Print
Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Tracial numerical ranges and linear dependence of operators
Bojan Kuzma, Chi-Kwong Li, Leiba Rodman, 2011, original scientific article

Abstract: Pokazano je, da lahko linearno odvisnost dveh operatorjev na Hilbertovem prostoru preverimo s pomočjo identičnosti v modulu dane sesquilinearne oz. kvadratične forme, pridružene operatorjema. Forme so bazirane na posplošenih numeričnih zakladih.
Found in: ključnih besedah
Summary of found: ...Hilbertov prostor, linearni operatorji, linearna odvisnost, posplošen numerični zaklad, ...
Keywords: matematika, linearna algebra, teorija operatorjev, Hilbertov prostor, linearni operatorji, linearna odvisnost, posplošen numerični zaklad
Published: 15.10.2013; Views: 1720; Downloads: 92
URL Full text (0,00 KB)
This document has more files! More...

2.
Maps on self-adjoint operators preserving numerical range of products up to a factor
Kan He, Gregor Dolinar, Jin Chuan Hou, Bojan Kuzma, 2011, original scientific article

Abstract: Let ▫$H$▫ be a complex Hilbert space and ▫${mathscr{S}}_a(H)$▫ the space of all self adjoint operators on ▫$H$▫. ▫$Phi colon {mathscr{S}}_a(H) to {mathscr{S}}_a(H)$▫ is a surjective map. For ▫$xi, eta in mathbb{C} setminus {1}$▫, then ▫$Phi$▫ satisfies that ▫$$W(AB - xi BA) = W(Phi(A)Phi(B) - etaPhi(B)phi(A))$$▫ for all ▫$A,B in {mathscr{S}}_a(H)$▫ if and only if there exists a unitary operator or con-unitary operator ▫$U$▫ such that ▫$Phi(A) = UAU^ast$▫ for all ▫$A in {mathscr{S}}_a(H)$▫ or ▫$Phi(A) = -UAU^ast$▫ for all ▫$A in {mathscr{S}}_a(H)$▫.
Found in: ključnih besedah
Summary of found: ...matematika, teorija operatorjev, numerični zaklad, ohranjevalci, ...
Keywords: matematika, teorija operatorjev, numerični zaklad, ohranjevalci
Published: 03.04.2017; Views: 756; Downloads: 12
URL Full text (0,00 KB)

Search done in 0 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica