Lupa

Search the repository Help

A- | A+ | Print
Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Classification of convex polyhedra by their rotational orbit Euler characteristic
Jurij Kovič, 2017, original scientific article

Abstract: Let ▫$\mathcal P$▫ be a polyhedron whose boundary consists of flat polygonal faces on some compact surface ▫$S(\mathcal P)$▫ (not necessarily homeomorphic to the sphere ▫$S^{2}$)▫. Let ▫$vo_{R}(\mathcal P), eo_{R}(\mathcal P)$▫, ▫$ fo_{R}(\mathcal P)$▫ be the numbers of rotational orbits of vertices, edges and faces, respectively, determined by the group ▫$G = G_{R}(P)$▫ of all the rotations of the Euclidean space ▫$E^{3}$▫ preserving ▫$\mathcal P$▫. We define the ''rotational orbit Euler characteristic'' of ▫$\mathcal P$▫ as the number ▫$Eo_{R}(\mathcal P) = vo_{R}(\mathcal P) - eo_{R}(\mathcal P) + fo_{R}(\mathcal P)$▫. Using the Burnside lemma we obtain the lower and the upper bound for ▫$Eo_{R}(\mathcal P)$▫ in terms of the genus of the surface ▫$S(P)$▫. We prove that ▫$Eo_{R} \in \lbrace 2,1,0,-1\rbrace $▫ for any convex polyhedron ▫$\mathcal P$▫. In the non-convex case ▫$Eo_{R}$▫ may be arbitrarily large or small.
Keywords: polyhedron, rotational orbit, Euler characteristic
Published in RUP: 03.01.2022; Views: 796; Downloads: 18
.pdf Full text (272,96 KB)

2.
Search done in 0 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica