1. The Terwilliger algebra of a distance-regular graph of negative typeŠtefko Miklavič, 2009, original scientific article Abstract: Let ▫$\Gamma$▫ denote a distance-regular graph with diameter ▫$D \ge 3$▫. Assume ▫$\Gamma$▫ has classical parameters ▫$(D,b,\alpha,\beta)▫$ with ▫$b < -1$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X(\mathbb{C})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let $A^\ast \in {\mathrm{Mat}}_X(\mathbb{C})$ denote the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ${\mathrm{Mat}}_X(\mathbb{C})$ generated by ▫$A,A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exist exactly two irreducible ▫$T$▫-modules with endpoint 1; their dimensions are ▫$D$▫ and ▫$2D-2$▫. For these ▫$T$▫-modules we display a basis consisting of eigenvectors for ▫$A^\ast$▫, and for each basis we give the action of ▫$A$▫. Found in: ključnih besedah Keywords: distance-regular graph, negative type, Terwilliger algebra Published: 15.10.2013; Views: 1709; Downloads: 80 Full text (0,00 KB) |
2. On bipartite Q-polynomial distance-regular graphs with c [sub] 2 [equal] 1Štefko Miklavič, 2007, original scientific article Abstract: Let ▫$\Gamma$▫ denote a bipartite ▫$Q$▫-polynomial distance-regular graph with diameter ▫$d \ge 3$▫, valency ▫$k \ge 3$▫ and intersection number ▫$c_2=1$▫. We show that ▫$\Gamma$▫ has a certain equitable partition of its vertex set which involves ▫$4d-4$▫ cells. We use this partition to show that the intersection numbers of ▫$\Gamma$▫ satisfy the following divisibility conditions: (I) ▫$c_{i+1}-1$▫ divides ▫$c_i(c_i-1)$▫ for ▫$2 \le i \le d-1$▫, and (II) ▫$b_{i-1}-1$▫ divides ▫$b_i(b_i-1)$▫ for ▫$1 \le i \le d-1$▫. Using these divisibility conditions we show that ▫$\Gamma$▫ does not exist if ▫$d=4$▫. Found in: ključnih besedah Keywords: mathematics, grah theory, distance-regular graphs, ▫$Q$▫-polynomial property, equitable partitions Published: 15.10.2013; Views: 1870; Downloads: 15 Full text (0,00 KB) |
3. |
4. A complete classification of cubic symmetric graphs of girth 6Klavdija Kutnar, Dragan Marušič, 2009, original scientific article Abstract: A complete classification of cubic symmetric graphs of girth 6 is given. It is shown that with the exception of the Heawood graph, the Moebius-Kantor graph, the Pappus graph, and the Desargues graph, a cubic symmetric graph ▫$X$▫ of girth 6 is a normal Cayley graph of a generalized dihedral group; in particular, (i) ▫$X$▫ is 2-regular if and only if it is isomorphic to a so-called ▫$I_k^n$▫-path, a graph of order either ▫$n^2/2$▫ or ▫$n^2/6$▫, which is characterized by the fact that its quotient relative to a certain semiregular automorphism is a path. (ii) ▫$X$▫ is 1-regular if and only if there exists an integer ▫$r$▫ with prime decomposition ▫$r=3^s p_1^{e_1} \dots p_t^{e_t} > 3$▫, where ▫$s \in \{0,1\}$▫, ▫$t \ge 1$▫, and ▫$p_i \equiv 1 \pmod{3}$▫, such that ▫$X$▫ is isomorphic either to a Cayley graph of a dihedral group ▫$D_{2r}$▫ of order ▫$2r$▫ or ▫$X$▫ is isomorphic to a certain ▫$\ZZ_r$▫-cover of one of the following graphs: the cube ▫$Q_3$▫, the Pappus graph or an ▫$I_k^n(t)$▫-path of order ▫$n^2/2$▫. Found in: ključnih besedah Summary of found: ...dihedral group; in particular, (i) ▫$X$▫ is 2- regular if and only if it is isomorphic... Keywords: graph theory, cubic graphs, symmetric graphs, ▫$s$▫-regular graphs, girth, consistent cycle Published: 15.10.2013; Views: 1883; Downloads: 57 Full text (0,00 KB) |
5. Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0Štefko Miklavič, 2008, original scientific article Abstract: Let ▫$\Gamma$▫ denote a ▫$Q$▫-polynomial distance-regular graph with diameter ▫$D \ge 3$▫ and intersection numbers ▫$a_1=0$▫, ▫$a_2 \ne 0$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let denote $A^\ast \in {\mathrm{Mat}}_X ({\mathbb{C}})$ the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫$A{\mathrm{Mat}}_X ({\mathbb{C}})$▫ generated by ▫$A$▫, ▫$A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exists a unique irreducible ▫$T$▫-module ▫$W$▫ with endpoint 1. We show that ▫$W$▫ has dimension ▫$2D-2$▫. We display a basis for ▫$W$▫ which consists of eigenvectors for ▫$A^\ast$▫. We display the action of ▫$A$▫ on this basis. We show that ▫$W$▫ appears in the standard module of ▫$\Gamma$▫ with multiplicity ▫$k-1$▫, where ▫$k$▫ is the valency of ▫$\Gamma$▫. Found in: ključnih besedah Keywords: mathematics, graph theory, adjacency matrix, distance-regular graph, Terwilliger algebra Published: 15.10.2013; Views: 1605; Downloads: 9 Full text (0,00 KB) |
6. |
7. Leonard triples and hypercubesŠtefko Miklavič, 2007, original scientific article Abstract: Let ▫$V$▫ denote a vector space over ▫$\mathbb{C}$▫ with finite positive dimension. By a Leonard triple on ▫$V$▫ we mean an ordered triple of linear operators on ▫$V$▫ such that for each of these operators there exists a basis of ▫$V$▫ with respect to which the matrix representing that operator is diagonal and the matrices representing the other two operators are irreducible tridiagonal. Let ▫$D$▫ denote a positive integer and let ▫${\mathcal{Q}}_D$▫ denote the graph of the ▫$D$▫-dimensional hypercube. Let ▫$X$ denote the vertex set of ▫${\mathcal{Q}}_D$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫${\mathcal{Q}}_D$▫. Fix ▫$x \in X$▫ and let ▫$A^\ast \in {\mathrm{Mat}}_X({\mathbb{C}})$▫ denote the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫${\mathrm{Mat}}_X({\mathbb{C}})$ generated by ▫$A,A^\ast$▫. We refer to ▫$T$▫ as the Terwilliger algebra of ▫${\mathcal{Q}}_D$▫ with respect to ▫$x$▫. The matrices ▫$A$▫ and ▫$A^\ast$▫ are related by the fact that ▫$2iA = A^\ast A^\varepsilon - A^\varepsilon A^\ast$▫ and ▫$2iA^\ast = A^\varepsilon A - AA^\varepsilon$▫, where ▫$2iA^\varepsilon = AA^\ast - A^\ast A$▫ and ▫$i^2 = -1$▫. We show that the triple ▫$A$▫, ▫$A^\ast$▫, ▫$A^\varepsilon$▫ acts on each irreducible ▫$T$▫-module as a Leonard triple. We give a detailed description of these Leonard triples. Found in: ključnih besedah Summary of found: ...mathematics, graph theory, Leonard triple, distance- regular graph, hypercube, Terwilliger algebra... Keywords: mathematics, graph theory, Leonard triple, distance-regular graph, hypercube, Terwilliger algebra Published: 15.10.2013; Views: 1627; Downloads: 67 Full text (0,00 KB) |
8. Large sets of long distance equienergetic graphsDragan Stevanović, 2009, original scientific article Abstract: Distance energy of a graph is a recent energy-type invariant, defined as the absolute deviation of the eigenvalues of the distance matrix of the graph. Two graphs of the same order are said to be distance equienergetic if they have equal distance energy, while they have distinct spectra of their distance matrices. Examples of pairs of distance equienergetic graphs appear in the literature already, but most of them have diameter two only. We describe here the distance spectrum of a special composition of regular graphs, and, as an application, we show that for any ▫$n \ge 3$▫, there exists a set of ▫$n + 1$▫ distance equienergetic graphs which have order ▫$6n$▫ and diameter ▫$n - 1$▫ each. Found in: ključnih besedah Summary of found: ...distance spectrum of a special composition of regular graphs, and, as an application, we show... Keywords: graph theory, distance spectrum, distance energy, join, regular graphs Published: 15.10.2013; Views: 1544; Downloads: 71 Full text (0,00 KB) |
9. |
10. Distance-regular Cayley graphs on dihedral groupsŠtefko Miklavič, Primož Potočnik, 2007, original scientific article Abstract: The main result of this article is a classification of distance-regular Cayley graphs on dihedral groups. There exist four obvious families of such graphs, which are called trivial. These are: complete graphs, complete bipartite graphs, complete bipartite graphs with the edges of a 1-factor removed, and cycles. It is proved that every non-trivial distance-regular Cayley graph on a dihedral group is bipartite, non-antipodal, has diameter 3 and arises either from a cyclic di#erence set, or possibly (if any such exists) from a dihedral difference set satisfying some additional conditions. Finally, all distance-transitive Cayley graphs on dihedral groups are determined. It transpires that a Cayley graph on a dihedral group is distance-transitive if and only if it is trivial, or isomorphic to the incidence or to the non-incidence graph of a projective space ▫$\mathrm{PG}_{d-1} (d,q)$▫, ▫$d \ge 2$▫, or the unique pair of complementary symmetric designs on 11 vertices. Found in: ključnih besedah Keywords: mathematics, grah theory, distance-regular graph, distance-transitive graph, Cayley graph, dihedral group, dihedrant, difference set Published: 15.10.2013; Views: 1327; Downloads: 63 Full text (0,00 KB) |