Print
Lupa

Search the repository Help

A- | A+ | Print
Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Characterization of edge-transitive 4-valent bicirculants
István Kovács, Boštjan Kuzman, Aleksander Malnič, Stephen Wilson, 2012, original scientific article

Abstract: Bicirkulant je graf, ki dopušča avtomorfizem z natanko dvema orbitama vozlišč enake velikosti. V članku so karakterizirani vsi neizomorfni 4-valentni povezavno tranzitivni bicirkulanti. Posledično je izpeljana karakterizacija 4-valentnih ločno tranzitivnih dihedrantov.
Found in: ključnih besedah
Summary of found: ...povezavno tranzitiven graf, ločno tranzitiven graf, dihedrant, rose window graf, grupa avtomorfizmov, ...
Keywords: matematika, teorija grafov, štirivalenten graf, bicirkulantni graf, Cayleyev graf, povezavno tranzitiven graf, ločno tranzitiven graf, dihedrant, rose window graf, grupa avtomorfizmov
Published: 15.10.2013; Views: 2038; Downloads: 71
URL Full text (0,00 KB)

2.
Classification of edge-transitive rose window graphs
István Kovács, Klavdija Kutnar, Dragan Marušič, 2010, original scientific article

Abstract: Given natural numbers ▫$n \ge 3$▫ and ▫$1 \le a$▫, ▫$r \le n-1$▫, the rose window graph ▫$R_n(a,r)$▫ is a quartic graph with vertex set ▫$\{x_i \vert i \in {\mathbb Z}_n\} \cup \{y_i \vert i \in {\mathbb Z}_n\}$▫ and edge set ▫$\{\{x_i, x_{i+1}\} \vert i \in {\mathbb Z}_n\} \cup \{\{y_i, y_{i+r}\} \vert i \in {\mathbb Z}_n\} \cup \{\{x_i, y_i\} \vert i \in {\mathbb Z}_n\} \cup \{\{x_{i+a}, y_i\} \vert i \in {\mathbb Z}_n\}$▫. In this article a complete classification of edge-transitive rose window graphs is given, thus solving one of three open problems about these graphs posed by Steve Wilson in 2001.
Found in: ključnih besedah
Keywords: group, graph, rose window, vertex-transitive, edge-transitive, arc-transitive
Published: 15.10.2013; Views: 1350; Downloads: 53
URL Full text (0,00 KB)

Search done in 0 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica