Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 8 / 8
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Rank-permutable additive mappings
Anna A. Alieva, Aleksandr Èmilevič Guterman, Bojan Kuzma, 2006, izvirni znanstveni članek

Opis: Let ▫$\sigma$▫ be a fixed non-identical permutation on ▫$k$▫ elements. Additive bijections ▫$T$▫ on the matrix algebra ▫$M_n(\mathbb{F})$▫ over a field ▫$\mathbb{F}$▫ of characteristic zero, with the property that ▫$\rm{rk} (A_1...A_k) = \rm{rk} (A_{\sigma(1)}...A_{\sigma(k)})$▫ implies the same condition on the ▫$T$▫ images, are characterized. It is also shown that the surjectivity assumption can be relaxed, if this property is preserved in both directions.
Najdeno v: ključnih besedah
Povzetek najdenega: ...▫$k$▫ elements. Additive bijections ▫$T$▫ on the matrix algebra ▫$M_n(\mathbb{F})$▫ over a field ▫$\mathbb{F}$▫ of...
Ključne besede: mathematics, linearna algebra, matrix algebra, rank, permutation, additive preservers
Objavljeno: 15.10.2013; Ogledov: 1304; Prenosov: 36
URL Polno besedilo (0,00 KB)

2.
Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0
Štefko Miklavič, 2008, izvirni znanstveni članek

Opis: Let ▫$\Gamma$▫ denote a ▫$Q$▫-polynomial distance-regular graph with diameter ▫$D \ge 3$▫ and intersection numbers ▫$a_1=0$▫, ▫$a_2 \ne 0$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let denote $A^\ast \in {\mathrm{Mat}}_X ({\mathbb{C}})$ the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫$A{\mathrm{Mat}}_X ({\mathbb{C}})$▫ generated by ▫$A$▫, ▫$A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exists a unique irreducible ▫$T$▫-module ▫$W$▫ with endpoint 1. We show that ▫$W$▫ has dimension ▫$2D-2$▫. We display a basis for ▫$W$▫ which consists of eigenvectors for ▫$A^\ast$▫. We display the action of ▫$A$▫ on this basis. We show that ▫$W$▫ appears in the standard module of ▫$\Gamma$▫ with multiplicity ▫$k-1$▫, where ▫$k$▫ is the valency of ▫$\Gamma$▫.
Najdeno v: ključnih besedah
Povzetek najdenega: ...▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and... ...dual adjacency matrix. Let ▫$T$▫ denote the sub algebra of ▫$A{\mathrm{Mat}}_X ({\mathbb{C}})$▫ generated by ▫$A$▫, ▫$A^\ast$▫....
Ključne besede: mathematics, graph theory, adjacency matrix, distance-regular graph, Terwilliger algebra
Objavljeno: 15.10.2013; Ogledov: 1389; Prenosov: 9
URL Polno besedilo (0,00 KB)

3.
Jordan [tau]-derivations of locally matrix rings
Chen-Lian Chuang, Ajda Fošner, Tsiu Kwen Lee, 2013, izvirni znanstveni članek

Opis: Let ▫$R$▫ be a prime, locally matrix ring of characteristic not 2 and let ▫$Q_{ms}(R)$▫ be the maximal symmetric ring of quotients of ▫$R$▫. Suppose that ▫$\delta \colon R \to Q_{ms}(R)$▫ is a Jordan ▫$\tau$▫-derivation, where ▫$\tau$▫ is an anti-automorphism of $R$. Then there exists ▫$a \in Q_{ms}(R)$▫ such that ▫$\delta(x) = xa - a\tau(x)$▫ for all ▫$x \in R$▫. Let ▫$X$▫ be a Banach space over the field ▫$\mathbb{F}$▫ of real or complex numbers and let ▫$\mathcal{B}(X)$▫ be the algebra of all bounded linear operators on ▫$X$▫. We prove that ▫$Q_{ms}(\mathcal{B}(X)) = \mathcal{B}(X)$▫, which provides the viewpoint of ring theory for some results concerning derivations on the algebra ▫$\mathcal{B}(X)$▫. In particular, all Jordan ▫$\tau$▫-derivations of ▫$\mathcal{B}(X)$▫ are inner if ▫$\dim_{\mathbb{F}} X>1$▫.
Najdeno v: ključnih besedah
Povzetek najdenega: ...complex numbers and let ▫$\mathcal{B}(X)$▫ be the algebra of all bounded linear operators on ▫$X$▫....
Ključne besede: mathematics, algebra, anti-automorphism, locally matrix ring, prime ring, Jordan homomorphism, Jordan ▫$\tau$▫-derivation, Banach space
Objavljeno: 15.10.2013; Ogledov: 1451; Prenosov: 21
URL Polno besedilo (0,00 KB)

4.
Jordan triple product homomorphisms
Bojan Kuzma, 2006, izvirni znanstveni članek

Opis: Nondegenerate mappings that preserve Jordan triple product on ▫${\mathscr{M}}_n({\mathbb{F}}$▫ are characterized. Here, ▫$n \ge 3$▫ and ▫$\mathbb{F}$▫ is an arbitrary field.
Najdeno v: ključnih besedah
Povzetek najdenega: ...mathematics, linear algebra, matrix algebra, Jordan triple product, nonlinear preserver...
Ključne besede: mathematics, linear algebra, matrix algebra, Jordan triple product, nonlinear preserver
Objavljeno: 15.10.2013; Ogledov: 1600; Prenosov: 58
URL Polno besedilo (0,00 KB)

5.
Mappings that preserve pairs of operators with zero triple Jordan product
Gorazd Lešnjak, Tatjana Petek, Chi-Kwong Li, Bojan Kuzma, Mirko Dobovišek, 2007, izvirni znanstveni članek

Opis: Let ▫$\mathbb{F}$▫ be a field and ▫$n \ge 3$▫. Suppose ▫${\mathfrak{G_1,G_2}} \subseteq M_n(\mathbb{F})▫$ contain all rank-one idempotents. The structure of surjections ▫$\phi : \mathfrak{G_1} \to \mathfrak{G_2}$▫ satisfying ▫$ABA = 0 \iff \phi(A)\phi(B)\phi(A) = 0$▫ is determined. Similar results are also obtained for (a) subsets of bounded operators acting on a complex or real Banach space, (b) the space of Hermitian matrices acting on ▫$n$▫-dimensional vectors over a skew-field, (c) subsets of self-adjoint bounded linear operators acting on an infinite dimensional complex Hilbert space. It is then illustrated that the results can be applied to characterize mappings ▫$\phi$▫ on matrices or operators such that ▫$F(ABA) = F(\phi(A)\phi(B)\phi(A))▫$ for all ▫$A,B$▫ for functions ▫$F$▫ such as the spectral norm, Schatten ▫$p$▫-norm, numerical radius and numerical range, etc.
Najdeno v: ključnih besedah
Povzetek najdenega: ... matrix algebra, Jordan triple product, nonlinear preservers...
Ključne besede: matrix algebra, Jordan triple product, nonlinear preservers
Objavljeno: 03.04.2017; Ogledov: 724; Prenosov: 40
URL Polno besedilo (0,00 KB)

6.
General preservers of quasi-commutativity
Bojan Kuzma, Gregor Dolinar, 2010, izvirni znanstveni članek

Opis: Let ▫$M_n$▫ be the algebra of all ▫$n \times n$▫ matrices over ▫$\mathbb{C}$▫. We say that ▫$A, B \in M_n$▫ quasi-commute if there exists a nonzero ▫$\xi \in \mathbb{C}$▫ such that ▫$AB = \xi BA$▫. In the paper we classify bijective not necessarily linear maps ▫$\Phi \colon M_n \to M_n$▫ which preserve quasi-commutativity in both directions.
Najdeno v: ključnih besedah
Povzetek najdenega: ...mathematics, linear algebra, general preserver, matrix algebra, quasi-commutativity...
Ključne besede: mathematics, linear algebra, general preserver, matrix algebra, quasi-commutativity
Objavljeno: 03.04.2017; Ogledov: 498; Prenosov: 29
URL Polno besedilo (0,00 KB)

7.
On maximal distances in a commuting graph
Bojan Kuzma, Polona Oblak, Gregor Dolinar, 2012, izvirni znanstveni članek

Opis: It is shown that matrices over algebraically closed fields that are farthest apart in the commuting graph must be non-derogatory. Rank-one matrices and diagonalizable matrices are also characterized in terms of the commuting graph.
Najdeno v: ključnih besedah
Povzetek najdenega: ...mathematics, linear algebra, graph theory, commuting graph, matrix algebra, algebraically closed field, centralizer, distance in...
Ključne besede: matematika, linearna algebra, teorija grafov, komutirajoči grafi, matrična algebra, algebraično zaprt obseg, centralizator, razdalja v grafih, mathematics, linear algebra, graph theory, commuting graph, matrix algebra, algebraically closed field, centralizer, distance in graphs
Objavljeno: 03.04.2017; Ogledov: 646; Prenosov: 69
URL Polno besedilo (0,00 KB)
Gradivo ima več datotek! Več...

8.
Permanent versus determinant over a finite field
Gregor Dolinar, Aleksandr Èmilevič Guterman, Marko Orel, Bojan Kuzma, 2013, objavljeni znanstveni prispevek na konferenci

Opis: Let ▫$\mathbb{F}$▫ be a finite field of characteristic different from 2. We study the cardinality of sets of matrices with a given determinant or a given permanent for the set of Hermitian matrices ▫$\mathcal{H}_n(\mathbb{F})$▫ and for the whole matrix space ▫$M_n(\mathbb{F})$▫. It is known that for ▫$n = 2$▫, there are bijective linear maps ▫$\Phi$▫ on ▫$\mathcal{H}_n(\mathbb{F})$▫ and ▫$M_n(\mathbb{F})$▫ satisfying the condition per ▫$A = \det \Phi(A)$▫. As an application of the obtained results, we show that if ▫$n \ge 3$▫, then the situation is completely different and already for ▫$n = 3$▫, there is no pair ofmaps ▫$(\Phi, \phi)$▫, where ▫$\Phi$▫ is an arbitrary bijective map on matrices and ▫$\phi \colon \mathbb{F} \to \mathbb{F}$▫ is an arbitrary map such that per ▫$A = \phi(\det \Phi(A))$▫ for all matrices ▫$A$▫ from the spaces ▫$\mathcal{H}_n(\mathbb{F})$▫ and ▫$M_n(\mathbb{F})$▫, respectively. Moreover, for the space ▫$M_n(\mathbb{F})$▫, we show that such a pair of transformations does not exist also for an arbitrary ▫$n > 3$▫ if the field ▫$\mathbb{F}$▫ contains sufficiently many elements (depending on ▫$n$▫). Our results are illustrated by a number of examples.
Najdeno v: ključnih besedah
Povzetek najdenega: ...Hermitian matrices ▫$\mathcal{H}_n(\mathbb{F})$▫ and for the whole matrix space ▫$M_n(\mathbb{F})$▫. It is known that for... ...mathematics, linear algebra, matrix theory, permanent, determinant...
Ključne besede: mathematics, linear algebra, matrix theory, permanent, determinant
Objavljeno: 03.04.2017; Ogledov: 613; Prenosov: 39
URL Polno besedilo (0,00 KB)

Iskanje izvedeno v 0 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici