Lupa

Search the repository Help

A- | A+ | Print
Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
On cryptographically significant mappings over GF(2 [sup] n)
Enes Pašalić, 2008, published scientific conference contribution

Abstract: In this paper we investigate the algebraic properties of important cryptographic primitives called substitution boxes (S-boxes). An S-box is a mapping that takes ▫$n$▫ binary inputs whose image is a binary ▫$m$▫-tuple; therefore it is represented as ▫$F:\text{GF}(2)^n \rightarrow \text{GF}(2)^m$▫. One of the most important cryptographic applications is the case ▫$n = m$▫, thus the S-box may be viewed as a function over ▫$\text{GF}(2^n)$▫. We show that certain classes of functions over ▫$\text{GF}(2^n)$▫ do not possess a cryptographic property known as APN (AlmostPerfect Nonlinear) permutations. On the other hand, when ▫$n$▫ is odd, an infinite class of APN permutations may be derived in a recursive manner, that is starting with a specific APN permutation on ▫$\text{GF}(2^k), k$▫ odd, APN permutations are derived over ▫$\text{GF}(2^{k+2i})$▫ for any ▫$i \geq 1$▫. Some theoretical results related to permutation polynomials and algebraic properties of the functions in the ring ▫$\text{GF}(q)[x,y]$▫ are also presented. For sparse polynomials over the field ▫$\text{GF}(2^n)$▫, an efficient algorithm for finding low degree I/O equations is proposed.
Keywords: cryptoanalysis, cryptography, permutation polynomials, power mappings, APN functions, S-box, CCZ-equivalence, algebraic properties
Published in RUP: 15.10.2013; Views: 3213; Downloads: 74
URL Link to full text

2.
Almost fully optimized infinite classes of Boolean functions resistant to (fast) algebraic cryptanalysis
Enes Pašalić, 2009, published scientific conference contribution

Abstract: In this paper the possibilities of an iterative concatenation method towards construction of Boolean functions resistant to algebraic cryptanalysis are investigated. The notion of ▫$\mathcal{AAR}$▫ (Algebraic Attack Resistant) function is introduced as a unified measure of protection against classical algebraic attacks as well as fast algebraic attacks. Then, it is shown that functions that posses the highest resistance to fast algebraic attacks are necessarily of maximum ▫$\mathcal{AI}$▫ (Algebraic Immunity), the notion defined as a minimum degree of functions that annihilate either ▫$f$▫ or ▫$1+f$▫. More precisely, if for any non-annihilating function ▫$g$▫ of degree ▫$e$▫ an optimum degreerelation ▫$e+d \ge n$▫ is satisfied in the product ▫$fg=h$▫ (denoting ▫$deg(h)=d$▫), then the function ▫$f$▫ in ▫$n$▫ variables must have maximum ▫$\mathcal{AI}$▫, i.e. for nonzero function ▫$g$▫ the relation ▫$fg=0$▫ or ▫$(1+f)g=0$▫ implies. The presented theoretical framework allows us to iteratively construct functions with maximum ▫$\mathcal{AI}$▫ satisfying ▫$e+d=n-1$▫, thus almost optimized resistance to fast algebraic cryptanalysis. This infinite class for the first time, apart from almost optimal resistance to algebraic cryptanalysis, in addition generates the functions that possess high nonlinearity (superior to previous constructions) and maximum algebraic degree, thus unifying most of the relevant cryptographic criteria.
Keywords: algebraic cryptoanalysis, fast algebraic attacks, algebraic immunity, annihilators, algebraic attack resistant, high degree product, stream ciphers, Boolean function
Published in RUP: 15.10.2013; Views: 3119; Downloads: 140
URL Link to full text

Search done in 0 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica