Natisni

Naslov: Linear maps preserving numerical radius of tensor products of matrices Fošner, Ajda (Avtor)Huang, Zejun (Avtor)Li, Chi-Kwong (Avtor)Sze, Nung-Sing (Avtor) http://dx.doi.org/10.1016/j.jmaa.2013.05.030 Angleški jezik Delo ni kategorizirano 1.01 - Izvirni znanstveni članek IAM - Inštitut Andrej Marušič V članku so karakterizirane linearne preslikave na tenzorskem produktu kompleksnih matrik, ki ohranjajo numerični radij. matematika, teorija matrik, kompleksne matrike, linearni ohranjevalci, numerični rang, numerični radij, tenzorski produkt 2013 str. 183-189 Vol. 407, iss. 2 0022-247X 512.643 16648025 1902 38 Gradivo ni uvrščeno v področja.

Skupna ocena: (0 glasov) Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

## Sekundarni jezik

Jezik: Neznan jezik Let ▫$m,n ge 2$▫ be positive integers. Denote by ▫$M_m$▫ the set of ▫$m times m$▫ complex matrices and by ▫$w(X)$▫ the numerical radius of a square matrix ▫$X$▫. Motivated by the study of operations on bipartite systems of quantum states, we show that a linear map ▫$phi colon M_{mn} to M_{mn}$▫ satisfies ▫$$w(phi(Aotimes B)) = w(A otimes B)quad text{for all } A in M_m text{ and } B in M_n$$▫ if and only if there is a unitary matrix ▫$U in M_{mn}$▫ and a complex unit ▫$xi$▫ such that ▫$$phi(A otimes B) = xi U(varphi_1(A) otimes varphi_2(B))U^ast quad text{for all } A in M_m text{ and } B in M_n$$▫ where ▫$varphi_k$▫ is the identity map or the transposition map ▫$X mapsto X_t$▫ for ▫$k = 1,2$▫, and the maps ▫$varphi_1$▫ and ▫$varphi_2$▫ will be of the same type if ▫$m,n ge 3$▫. In particular, if ▫$m,n ge 3$▫, the map corresponds to an evolution of a closed quantum system (under a fixed unitary operator), possibly followed by a transposition. The results are extended to multipartite systems. mathematics, matrix theory, complex matrices, linear preservers, numerical range, numerical radius, tensor product

## Komentarji

Dodaj komentar

izpis_zaKomentiranje

Komentarji (0)
 0 - 0 / 0 Ni komentarjev!

Nazaj