Lupa

Show document Help

A- | A+ | Print
Title:Sectional split extensions arising from lifts of groups
Authors:ID Požar, Rok (Author)
Files:.pdf RAZ_Pozar_Rok_i2013.pdf (365,16 KB)
MD5: DAC0D35F37B79540A45F13083C43856E
 
Language:English
Work type:Unknown
Typology:1.01 - Original Scientific Article
Organization:ZUP - University of Primorska Press
Abstract:Covering techniques have recently emerged as an effective tool used for classification of several infinite families of connected symmetric graphs. One commonly encountered technique is based on the concept of lifting groups of automorphisms along regular covering projections ▫$\wp \colon \tilde{X} \to X$▫. Efficient computational methods are known for regular covers with cyclic or elementary abelian group of covering transformations CT▫$(\wp)$▫. In this paper we consider the lifting problem with an additional condition on how a group should lift: given a connected graph ▫$X$▫ and a group ▫$G$▫ of its automorphisms, find all connected regular covering projections ▫$\wp \colon \tilde{X} \to X$▫ along which ▫$G$▫ lifts as a sectional split extension. By this we mean that there exists a complement ▫$\overline{G}$▫ of CT▫$(\wp)$▫ within the lifted group ▫$\tilde{G}$▫ such that ▫$\overline{G}$▫ has an orbit intersecting each fibre in at most one vertex. As an application, all connected elementary abelian regular coverings of the complete graph ▫$K_4$▫ along which a cyclic group of order 4 lifts as a sectional split extension are constructed.
Keywords:covering projection, graph, group extension, lifting automorphisms, voltage assignment
Year of publishing:2013
Number of pages:str. 393-408
Numbering:Vol. 6, no. 2
PID:20.500.12556/RUP-17609 This link opens in a new window
UDC:519.17:512.54
ISSN on article:1855-3966
COBISS.SI-ID:1024540756 This link opens in a new window
Publication date in RUP:30.12.2021
Views:1420
Downloads:4
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Ars mathematica contemporanea
Publisher:Društvo matematikov, fizikov in astronomov, Društvo matematikov, fizikov in astronomov, Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
ISSN:1855-3966
COBISS.SI-ID:239049984 This link opens in a new window

Secondary language

Language:English
Abstract:Krovne tehnike so se izkazale kot učinkovito orodje pri klasifikaciji več neskončnih družin povezanih simetričnih grafov. Ena izmed pogostih tehnik, s katerimi se srečamo, temelji na konceptu dviga avtomorfizmov grup vzdolž regularnih krovnih projekcij ▫$\wp \colon \tilde{X} \to X$▫. Učinkovite računske metode so znane v primeru regulanih krovov s ciklično ali elementarno abelsko grupo krovnih transformacij CT▫$(\wp)$▫. V članku študiramo problem dviga pri dodatnem pogoju, kako naj se grupa dvigne: za dani povezan graf▫ $X$▫ in podgrupo ▫$G$▫ njegovih avtomorfizmov poišči vse povezane regularne krovne projekcije ▫$\wp \colon \tilde{X} \to X$▫, vzdolž katerih se ▫$G$▫ dvigne kot sekcijska razcepna razširitev. To pomeni, da obstajakomplement ▫$\overline{G}$▫ k CT▫$(\wp)$▫ znotraj dvignjene grupe ▫$\tilde{G}$▫, tako da ima ▫$\overline{G}$▫ orbito, ki seka vsako vlakno v največ enem vozlišču. Za ilustracijo konstruiramo vse povezane elementarno ableske regularne krove polnega grafa ▫$K_4$▫, vzdolž katerih se ciklična grupa reda 4 dvigne kot sekcijska razcepna razširitev.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica