Title: | Classification of convex polyhedra by their rotational orbit Euler characteristic |
---|
Authors: | ID Kovič, Jurij (Author) |
Files: | RAZ_Kovic_Jurij_i2017.pdf (272,96 KB) MD5: 34C55610C9518FB2AA931FEDFA9E96B9
|
---|
Language: | English |
---|
Work type: | Unknown |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | ZUP - University of Primorska Press
|
---|
Abstract: | Let ▫$\mathcal P$▫ be a polyhedron whose boundary consists of flat polygonal faces on some compact surface ▫$S(\mathcal P)$▫ (not necessarily homeomorphic to the sphere ▫$S^{2}$)▫. Let ▫$vo_{R}(\mathcal P), eo_{R}(\mathcal P)$▫, ▫$ fo_{R}(\mathcal P)$▫ be the numbers of rotational orbits of vertices, edges and faces, respectively, determined by the group ▫$G = G_{R}(P)$▫ of all the rotations of the Euclidean space ▫$E^{3}$▫ preserving ▫$\mathcal P$▫. We define the ''rotational orbit Euler characteristic'' of ▫$\mathcal P$▫ as the number ▫$Eo_{R}(\mathcal P) = vo_{R}(\mathcal P) - eo_{R}(\mathcal P) + fo_{R}(\mathcal P)$▫. Using the Burnside lemma we obtain the lower and the upper bound for ▫$Eo_{R}(\mathcal P)$▫ in terms of the genus of the surface ▫$S(P)$▫. We prove that ▫$Eo_{R} \in \lbrace 2,1,0,-1\rbrace $▫ for any convex polyhedron ▫$\mathcal P$▫. In the non-convex case ▫$Eo_{R}$▫ may be arbitrarily large or small. |
---|
Keywords: | polyhedron, rotational orbit, Euler characteristic |
---|
Year of publishing: | 2017 |
---|
Number of pages: | str. 23-30 |
---|
Numbering: | Vol. 13, no. 1 |
---|
PID: | 20.500.12556/RUP-17627 |
---|
UDC: | 514.113.5:519.1 |
---|
ISSN on article: | 1855-3966 |
---|
COBISS.SI-ID: | 17897561 |
---|
Publication date in RUP: | 02.01.2022 |
---|
Views: | 1145 |
---|
Downloads: | 19 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |