Lupa

Show document Help

A- | A+ | Print
Title:Splittable and unsplittable graphs and configurations
Authors:ID Bašić, Nino (Author)
ID Grošelj, Jan (Author)
ID Grünbaum, Branko (Author)
ID Pisanski, Tomaž (Author)
Files:.pdf RAZ_Basic_Nino_i2019.pdf (355,79 KB)
MD5: 58041896E2415F83545856E7417F31C4
 
Language:English
Work type:Unknown
Typology:1.01 - Original Scientific Article
Organization:ZUP - University of Primorska Press
Abstract:We prove that there exist infinitely many splittable and also infinitely many unsplittable cyclic ▫$(n_3)$▫ configurations. We also present a complete study of trivalent cyclic Haar graphs on at most 60 vertices with respect to splittability. Finally, we show that all cyclic flag-transitive configurations with the exception of the Fano plane and the Möbius-Kantor configuration are splittable.
Keywords:configuration of points and lines, unsplittable configuration, unsplittable graph, independent set, Levi graph, Grünbaum graph, splitting type, cyclic Haar graph
Year of publishing:2019
Number of pages:str. 1-17
Numbering:Vol. 16, no. 1
PID:20.500.12556/RUP-17632 This link opens in a new window
UDC:519.14
ISSN on article:1855-3966
DOI:10.26493/1855-3974.1467.04b This link opens in a new window
COBISS.SI-ID:18699097 This link opens in a new window
Publication date in RUP:03.01.2022
Views:1313
Downloads:20
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Ars mathematica contemporanea
Publisher:Društvo matematikov, fizikov in astronomov, Društvo matematikov, fizikov in astronomov, Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
ISSN:1855-3966
COBISS.SI-ID:239049984 This link opens in a new window

Secondary language

Language:Slovenian
Title:Razcepni in nerazcepni grafi in konfiguracije
Abstract:Dokažemo, da obstaja neskončno mnogo razcepnih in neskončno mnogo nerazcepnih ▫$(n_3)$▫ konfiguracij. Podamo tudi popolno obravnavo trivalentnih cikličnih Haarovih grafov z največ 60 vozlišči glede na razcepnost. Na koncu pokažemo, da so vse praporno tranzitivne konfiguracije, razen Fanove ravnine in Möbius-Kantorjeve konfiguracije, razcepne.
Keywords:konfiguracija točk in premic, nerazcepna konfiguracije, nerazcepni graf, neodvisna množica vozlišč, Levijev graf, Grünbaumov graf, razcepni tip, ciklični Haarov graf


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica