Lupa

Show document Help

A- | A+ | Print
Title:On bipartite Q-polynomial distance-regular graphs with c [sub] 2 [equal] 1
Authors:ID Miklavič, Štefko (Author)
Files:URL http://dx.doi.org/10.1016/j.disc.2005.09.044
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:IAM - Andrej Marušič Institute
Abstract:Let ▫$\Gamma$▫ denote a bipartite ▫$Q$▫-polynomial distance-regular graph with diameter ▫$d \ge 3$▫, valency ▫$k \ge 3$▫ and intersection number ▫$c_2=1$▫. We show that ▫$\Gamma$▫ has a certain equitable partition of its vertex set which involves ▫$4d-4$▫ cells. We use this partition to show that the intersection numbers of ▫$\Gamma$▫ satisfy the following divisibility conditions: (I) ▫$c_{i+1}-1$▫ divides ▫$c_i(c_i-1)$▫ for ▫$2 \le i \le d-1$▫, and (II) ▫$b_{i-1}-1$▫ divides ▫$b_i(b_i-1)$▫ for ▫$1 \le i \le d-1$▫. Using these divisibility conditions we show that ▫$\Gamma$▫ does not exist if ▫$d=4$▫.
Keywords:mathematics, grah theory, distance-regular graphs, ▫$Q$▫-polynomial property, equitable partitions
Year of publishing:2007
Number of pages:str. 544-553
Numbering:Vol. 307, iss. 3-5
PID:20.500.12556/RUP-286 This link opens in a new window
ISSN:0012-365X
UDC:519.17
COBISS.SI-ID:14181465 This link opens in a new window
Publication date in RUP:15.10.2013
Views:4640
Downloads:38
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:Slovenian
Abstract:Naj bo ▫$\Gamma$▫ dvodelen ▫$Q$▫-polinomski razdaljno regularen graf premera ▫$d \ge 3$▫, stopnje ▫$k \ge 3$▫ in presečnim številom ▫$c_2=1$▫. Pokažemo, da množica vozlišč grafa ▫$\Gamma$▫ premore ekvitabilno particijo, ki vsebuje ▫$4d-4$▫ množic. S pomočjo te ekvitabilne particije doka\emo, da morajo presečna števila grafa ▫$\Gamma$▫ zadoščati naslednjim pogojem: (I) ▫$c_{i+1}-1$▫ deli ▫$c_i(c_i-1)$▫ za ▫$2 \le i \le d-1$▫, (II) ▫$b_{i-1}-1$▫ deli ▫$b_i(b_i-1)$▫ za ▫$1 \le i \le d-1$▫. S pomočjo teh pogojev dokažemo, da graf ▫$\Gamma$▫ ne obstaja, če je ▫$d=4$▫.
Keywords:matematika, teorija grafov, razdaljno regularni grafi, ▫$Q$▫-polinomska lastnost, ekvitabilne particije


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica