| Title: | Classification of edge-transitive rose window graphs |
|---|
| Authors: | ID Kovács, István (Author) ID Kutnar, Klavdija (Author) ID Marušič, Dragan (Author) |
| Files: | http://dx.doi.org/10.1002/jgt.20475
|
|---|
| Language: | English |
|---|
| Work type: | Not categorized |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IAM - Andrej Marušič Institute
|
|---|
| Abstract: | Given natural numbers ▫$n \ge 3$▫ and ▫$1 \le a$▫, ▫$r \le n-1$▫, the rose window graph ▫$R_n(a,r)$▫ is a quartic graph with vertex set ▫$\{x_i \vert i \in {\mathbb Z}_n\} \cup \{y_i \vert i \in {\mathbb Z}_n\}$▫ and edge set ▫$\{\{x_i, x_{i+1}\} \vert i \in {\mathbb Z}_n\} \cup \{\{y_i, y_{i+r}\} \vert i \in {\mathbb Z}_n\} \cup \{\{x_i, y_i\} \vert i \in {\mathbb Z}_n\} \cup \{\{x_{i+a}, y_i\} \vert i \in {\mathbb Z}_n\}$▫. In this article a complete classification of edge-transitive rose window graphs is given, thus solving one of three open problems about these graphs posed by Steve Wilson in 2001. |
|---|
| Keywords: | group, graph, rose window, vertex-transitive, edge-transitive, arc-transitive |
|---|
| Year of publishing: | 2010 |
|---|
| Number of pages: | str. 216-231 |
|---|
| Numbering: | Vol. 65, no. 3 |
|---|
| PID: | 20.500.12556/RUP-3215  |
|---|
| ISSN: | 0364-9024 |
|---|
| UDC: | 519.17 |
|---|
| COBISS.SI-ID: | 1024189012  |
|---|
| Publication date in RUP: | 15.10.2013 |
|---|
| Views: | 4407 |
|---|
| Downloads: | 115 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Average score: | (0 votes) |
|---|
| Your score: | Voting is allowed only for logged in users. |
|---|
| Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |