Title: | Classification of edge-transitive rose window graphs |
---|
Authors: | ID Kovács, István (Author) ID Kutnar, Klavdija (Author) ID Marušič, Dragan (Author) |
Files: | http://dx.doi.org/10.1002/jgt.20475
|
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IAM - Andrej Marušič Institute
|
---|
Abstract: | Given natural numbers ▫$n \ge 3$▫ and ▫$1 \le a$▫, ▫$r \le n-1$▫, the rose window graph ▫$R_n(a,r)$▫ is a quartic graph with vertex set ▫$\{x_i \vert i \in {\mathbb Z}_n\} \cup \{y_i \vert i \in {\mathbb Z}_n\}$▫ and edge set ▫$\{\{x_i, x_{i+1}\} \vert i \in {\mathbb Z}_n\} \cup \{\{y_i, y_{i+r}\} \vert i \in {\mathbb Z}_n\} \cup \{\{x_i, y_i\} \vert i \in {\mathbb Z}_n\} \cup \{\{x_{i+a}, y_i\} \vert i \in {\mathbb Z}_n\}$▫. In this article a complete classification of edge-transitive rose window graphs is given, thus solving one of three open problems about these graphs posed by Steve Wilson in 2001. |
---|
Keywords: | group, graph, rose window, vertex-transitive, edge-transitive, arc-transitive |
---|
Year of publishing: | 2010 |
---|
Number of pages: | str. 216-231 |
---|
Numbering: | Vol. 65, no. 3 |
---|
PID: | 20.500.12556/RUP-3215 |
---|
ISSN: | 0364-9024 |
---|
UDC: | 519.17 |
---|
COBISS.SI-ID: | 1024189012 |
---|
Publication date in RUP: | 15.10.2013 |
---|
Views: | 3393 |
---|
Downloads: | 96 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |