Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
SLO
Login
Search
Browsing
Upload document
Statistics
RUP
FAMNIT - Faculty of Mathematics, Science and Information Technologies
FHŠ - Faculty of Humanities
FM - Faculty of Management
FTŠ Turistica - Turistica – College of Tourism Portorož
FVZ - Faculty of Health Sciences
IAM - Andrej Marušič Institute
PEF - Faculty of Education
UPR - University of Primorska
ZUP - University of Primorska Press
COBISS
University of Primorska, University Library - all departments
First page
/
Show document
Show document
A-
|
A+
|
Print
Title:
The Hyers-Ulam-Rassias stability of (m,n)[sub]{([sigma], [tau])}-derivations on normed algebras
Authors:
ID
Fošner, Ajda
(Author)
Files:
http://dx.doi.org/10.1155/2012/347478
Language:
English
Work type:
Not categorized
Typology:
1.01 - Original Scientific Article
Organization:
IAM - Andrej Marušič Institute
Abstract:
We study the Hyers-Ulam-Rassias stability of
(
m
,
n
)
(
σ
,
τ
)
-derivations on normed algebras.
Keywords:
Hyers-Ulam-Rassias stability
,
normed algebra
,
(
m
,
n
)
(
σ
,
τ
)
-derivation
Year of publishing:
2012
Number of pages:
art. 347478 (11 str.)
Numbering:
Vol. 2012
PID:
20.500.12556/RUP-581
ISSN:
1085-3375
UDC:
517.965
COBISS.SI-ID:
16351321
Publication date in RUP:
15.10.2013
Views:
3815
Downloads:
39
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
FOŠNER, Ajda, 2012, The Hyers-Ulam-Rassias stability of (m,n)[sub]{([sigma], [tau])}-derivations on normed algebras. [online]. 2012. Vol. 2012. [Accessed 5 April 2025]. Retrieved from: http://dx.doi.org/10.1155/2012/347478
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Hyers-Ulam-Rassias stability of generalized module left (m,n)-derivations
On the generalized Hyers-Ulam stability of module left (m, n)-derivations
Armandnejad, A.; Heydari, H.: Linear preserving gd-majorization functions from M [sub] {n,m} to M [sub] {n,k}. (English). - [J] Bull. Iran. Math. Soc. 37, No. 1, 215-224 (2011). ISSN 1017-060X
Jordan [tau]-derivations of locally matrix rings
Prime and semiprime rings with symmetric skew 3-derivations
Similar works from other repositories:
Lee, Tsiu-Kwen(RC-NTAI): Posner's theorem for [sigma,\tau]-derivations and [sigma]-centralizing maps. (English summary). - Houston J. Math. 30 (2004), no. 2, 309--320 (electronic)
Approximate cubic Lie derivations
Jordan derivations revisited
Characterizing homomorphisms, derivations and multipliers in rings with idempotents
Functional identities and d-free sets
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
Slovenian
Abstract:
V članku obravnavamo Hyers-Ulam-Rassias stabilnost
(
m
,
n
)
(
σ
,
τ
)
-odvajanj na normalnih algebrah.
Keywords:
Hyers-Ulam-Rassiasova stabilnost
,
normalna algebra
,
(
m
,
n
)
(
σ
,
τ
)
-odvajanje
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back