Title: | Semisymmetric elementary abelian covers of the Möbius-Kantor graph |
---|
Authors: | ID Malnič, Aleksander (Author) ID Marušič, Dragan (Author) ID Miklavič, Štefko (Author) ID Potočnik, Primož (Author) |
Files: | http://dx.doi.org/10.1016/j.disc.2006.10.008
|
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IAM - Andrej Marušič Institute
|
---|
Abstract: | Let ▫$\wp_N : \tilde{X} \to X$▫ be a regular covering projection of connected graphs with the group of covering transformations isomorphic to ▫$N$▫. If ▫$N$▫ is an elementary abelian ▫$p$▫-group, then the projection ▫$\wp_N$▫ is called ▫$p$▫-elementary abelian. The projection ▫$\wp_N$▫ is vertex-transitive (edge-transitive) if some vertex-transitive (edge-transitive) subgroup of Aut ▫$X$▫ lifts along ▫$\wp_N$▫, and semisymmetric if it is edge- but not vertex-transitive. The projection ▫$\wp_N$▫ is minimal semisymmetric if ▫$\wp_N$▫ cannot be written as a composition ▫$\wp_N = \wp \circ \wp_M$▫ of two (nontrivial) regular covering projections, where ▫$\pw_M$▫ is semisymmetric. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields (see [A. Malnic, D. Marušic, P. Potocnik, Elementary abelian covers of graphs, J. Algebraic Combin. 20 (2004) 71-97]). In this paper, all pairwise nonisomorphic minimal semisymmetric elementary abelian regular covering projections of the Möbius-Kantor graph, the Generalized Petersen graph GP(8,3), are constructed. No such covers exist for ▫$p=2$▫. Otherwise, the number of such covering projections is equal to ▫$(p-1)/4$▫ and ▫$1+(p-1)/4$▫ in cases ▫$p \equiv 5,9,13,17,21 \pmod{24}$▫ and ▫$p \equiv 1 \pmod{24}$▫, respectively, and to ▫$(p+1)/4$▫ and ▫$1+(p+1)/4$▫ in cases ▫$p \equiv 3,7,11,15,23 \pmod{24}$▫ and ▫$p \equiv 19 \pmod{24}$▫, respectively. For each such covering projection the voltage rules generating the corresponding covers are displayed explicitly. |
---|
Keywords: | mathematics, graph theory, graph, covering projection, lifting automorphisms, homology group, group representation, matrix group, invariant subspaces |
---|
Year of publishing: | 2007 |
---|
Number of pages: | str. 2156-2175 |
---|
Numbering: | Vol. 307, iss. 17-18 |
---|
PID: | 20.500.12556/RUP-7723 |
---|
ISSN: | 0012-365X |
---|
UDC: | 519.17 |
---|
COBISS.SI-ID: | 14337113 |
---|
Publication date in RUP: | 02.04.2017 |
---|
Views: | 2730 |
---|
Downloads: | 89 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |