Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
SLO
Login
Search
Browsing
Upload document
Statistics
RUP
FAMNIT - Faculty of Mathematics, Science and Information Technologies
FHŠ - Faculty of Humanities
FM - Faculty of Management
FTŠ Turistica - Turistica – College of Tourism Portorož
FVZ - Faculty of Health Sciences
IAM - Andrej Marušič Institute
PEF - Faculty of Education
UPR - University of Primorska
ZUP - University of Primorska Press
COBISS
University of Primorska, University Library - all departments
First page
/
Show document
Show document
A-
|
A+
|
Print
Title:
Reflexivity defect of spaces of linear operators
Authors:
ID
Bračič, Janko
(Author)
ID
Kuzma, Bojan
(Author)
Files:
http://dx.doi.org/10.1016/j.laa.2008.07.024
Language:
English
Work type:
Not categorized
Typology:
1.01 - Original Scientific Article
Organization:
IAM - Andrej Marušič Institute
Abstract:
For a finite-dimensional linear subspace ▫{
\mathscr{S}} \subseteq {\mathscr{L}} (V,W)
\mathscr{S}} \subseteq {\mathscr{L}} (V,W)
▫ and a positive integer
k
, the
k
-reflexivity defect of
S
is defined by
r
d
k
(
S
)
=
dim
(
R
e
f
k
(
S
)
/
S
)
where
R
e
f
k
is the
k
-reflexive closure of
S
. We study this quantity for two-dimensional spaces of operators and for single generated algebras and their commutants.
Keywords:
mathematics
,
operator theory
,
reflexivity defect
,
reflexivity
,
two-dimensional space of operators
,
single generated algebra
,
commutant
Year of publishing:
2009
Number of pages:
str. 344-359
Numbering:
Vol. 430, iss. 1
PID:
20.500.12556/RUP-7728
ISSN:
0024-3795
UDC:
517.983:512.643
DOI:
10.1016/j.laa.2008.07.024
COBISS.SI-ID:
14977369
Publication date in RUP:
03.04.2017
Views:
2744
Downloads:
196
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BRAČIČ, Janko and KUZMA, Bojan, 2009, Reflexivity defect of spaces of linear operators. [online]. 2009. Vol. 430, no. 1, p. 344–359. [Accessed 3 April 2025]. DOI 10.1016/j.laa.2008.07.024. Retrieved from: http://dx.doi.org/10.1016/j.laa.2008.07.024
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Hou, Jinchuan; Zhao, Liankuo: Zero-product preserving additive maps on symmetric operator spaces and self-adjoint operator spaces. (English). - [J] Linear Algebra Appl. 399, 235-244 (2005). [ISSN 0024-3795]
Petek, Tatjana: A note on unitary similarity preserving linear mappings on $B(H)$. (English). - [J] Linear Algebra Appl. 394, 217-224 (2005). [ISSN 0024-3795]
Cui, Jianlian; Hou, Jinchuan: Linear maps preserving idempotence on nest algebras. (English). - [J] Acta Math. Sin., Engl. Ser. 20, No. 5, 807-820 (2004). [ISSN 1439-8516; ISSN 1439-7617]
Zhao, L.; Hou, J.: Jordan zero-product preserving additive maps on operator algebras. (English). - [J] J. Math. Anal. Appl. 314, No. 2, 689-700 (2006). [ISSN 0022-247X]
Di, Qinghui; Du, Xuefeng; Hou, Jinchuan. - Adjacency preserving maps on the space of self-adjoint operators. (English). - [J] Chin. Ann. Math., Ser. B 26, No.2, 305-314 (2005). [ISSN 0252-9599; ISSN 1860-6261]
Similar works from other repositories:
Refleksivnost in refleksivnostni defekt prostorov operatorjev
Hou, Jinchuan; Cui, Jianlian: Rank-1 preserving linear maps on nest algebras. (English). - [J] Linear Algebra Appl. 369, 263-277 (2003). [ISSN 0024-3795]
Hou, Jinchuan; Hou, Shengzhao: Linear maps on operator algebras that preserve elements annihilated by a polynomial. (English). - [J] Proc. Am. Math. Soc. 130, No.8, 2383-2395 (2002). [ISSN 0002-9939; ISSN 1088-6826]
Yang, Dilian Jordan [star]-derivation pairs on standard operator algebras and related results. (English). - [J] Colloq. Math. 102, No.1, 137-145 (2005). [ISSN 0010-1354; ISSN 1730-6302]
A note on spectrum-preserving maps
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
Slovenian
Title:
Refleksivnostni defekt prostorov linearnih operatorjev
Abstract:
Za končnodimenzionalen linearen prostor
S
⊆
L
(
V
,
W
)
in naravno število
k
je
k
-refleksivnostni defekt prostora
S
definiran kot
r
d
k
(
S
)
=
dim
(
R
e
f
k
(
S
)
/
S
)
, pri čemer je
R
e
f
k
k
-refleksivnostno zaprtje za
S
. V članku izračunamo refleksivnostni defekt za dvodimenzionalne prostore operatorjev, za algebre generirane z enim operatorjem in za njihove komutante.
Keywords:
matematika
,
teorija operatorjev
,
refleksivnost
,
refleksivnostni defekt
,
dvodimenzionalen prostor operatorjev
,
algebra generirana z enim operatorjem
,
komutant
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back