Lupa

Show document Help

A- | A+ | Print
Title:Maps on self-adjoint operators preserving numerical range of products up to a factor
Authors:ID He, Kan (Author)
ID Hou, Jin Chuan (Author)
ID Dolinar, Gregor (Author)
ID Kuzma, Bojan (Author)
Files:URL http://www.actamath.com/Jwk_sxxb_cn/CN/volumn/volumn_1986.shtml
 
Language:Unknown
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:IAM - Andrej Marušič Institute
Abstract:Let ▫$H$▫ be a complex Hilbert space and ▫${mathscr{S}}_a(H)$▫ the space of all self adjoint operators on ▫$H$▫. ▫$Phi colon {mathscr{S}}_a(H) to {mathscr{S}}_a(H)$▫ is a surjective map. For ▫$xi, eta in mathbb{C} setminus {1}$▫, then ▫$Phi$▫ satisfies that ▫$$W(AB - xi BA) = W(Phi(A)Phi(B) - etaPhi(B)phi(A))$$▫ for all ▫$A,B in {mathscr{S}}_a(H)$▫ if and only if there exists a unitary operator or con-unitary operator ▫$U$▫ such that ▫$Phi(A) = UAU^ast$▫ for all ▫$A in {mathscr{S}}_a(H)$▫ or ▫$Phi(A) = -UAU^ast$▫ for all ▫$A in {mathscr{S}}_a(H)$▫.
Keywords:matematika, teorija operatorjev, numerični zaklad, ohranjevalci
Year of publishing:2011
Number of pages:str. 925-932
Numbering:Vol. 54, no. 6
PID:20.500.12556/RUP-7742 This link opens in a new window
ISSN:0583-1431
UDC:517.983
COBISS.SI-ID:16397401 This link opens in a new window
Publication date in RUP:02.04.2017
Views:2710
Downloads:35
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Abstract:Let ▫$H$▫ be a complex Hilbert space and ▫${\mathscr{S}}_a(H)$▫ the space of all self adjoint operators on ▫$H$▫. ▫$\Phi \colon {\mathscr{S}}_a(H) \to {\mathscr{S}}_a(H)$▫ is a surjective map. For ▫$\xi, \eta \in \mathbb{C} \setminus \{1\}$▫, then ▫$\Phi$▫ satisfies that ▫$$W(AB - \xi BA) = W(\Phi(A)\Phi(B) - \eta\Phi(B)\phi(A))$$▫ for all ▫$A,B \in {\mathscr{S}}_a(H)$▫ if and only if there exists a unitary operator or con-unitary operator ▫$U$▫ such that ▫$\Phi(A) = UAU^\ast$▫ for all ▫$A \in {\mathscr{S}}_a(H)$▫ or ▫$\Phi(A) = -UAU^\ast$▫ for all ▫$A \in {\mathscr{S}}_a(H)$▫.
Keywords:matematika, teorija operatorjev, numerični zaklad, ohranjevalci, mathematics, operator theory, numerical range, preservers, product up to a factor


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica