Lupa

Show document Help

A- | A+ | Print
Title:Maps on self-adjoint operators preserving numerical range of products up to a factor
Authors:ID He, Kan (Author)
ID Hou, Jin Chuan (Author)
ID Dolinar, Gregor (Author)
ID Kuzma, Bojan (Author)
Files:URL http://www.actamath.com/Jwk_sxxb_cn/CN/volumn/volumn_1986.shtml
 
Language:Unknown
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:IAM - Andrej Marušič Institute
Abstract:Let H be a complex Hilbert space and mathscrSa(H) the space of all self adjoint operators on H. PhicolonmathscrSa(H)tomathscrSa(H) is a surjective map. For xi,etainmathbbCsetminus1, then Phi satisfies that $W(ABxiBA)=W(Phi(A)Phi(B)etaPhi(B)phi(A))$ for all A,BinmathscrSa(H) if and only if there exists a unitary operator or con-unitary operator U such that Phi(A)=UAUast for all AinmathscrSa(H) or Phi(A)=UAUast for all AinmathscrSa(H).
Keywords:matematika, teorija operatorjev, numerični zaklad, ohranjevalci
Year of publishing:2011
Number of pages:str. 925-932
Numbering:Vol. 54, no. 6
PID:20.500.12556/RUP-7742 This link opens in a new window
ISSN:0583-1431
UDC:517.983
COBISS.SI-ID:16397401 This link opens in a new window
Publication date in RUP:03.04.2017
Views:3024
Downloads:37
Metadata:XML DC-XML DC-RDF
:
HE, Kan, HOU, Jin Chuan, DOLINAR, Gregor and KUZMA, Bojan, 2011, Maps on self-adjoint operators preserving numerical range of products up to a factor. [online]. 2011. Vol. 54, no. 6, p. 925–932. [Accessed 3 April 2025]. Retrieved from: http://www.actamath.com/Jwk_sxxb_cn/CN/volumn/volumn_1986.shtml
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Abstract:Let H be a complex Hilbert space and Sa(H) the space of all self adjoint operators on H. Φ:Sa(H)Sa(H) is a surjective map. For ξ,ηC{1}, then Φ satisfies that $W(ABξBA)=W(Φ(A)Φ(B)ηΦ(B)ϕ(A))$ for all A,BSa(H) if and only if there exists a unitary operator or con-unitary operator U such that Φ(A)=UAU for all ASa(H) or Φ(A)=UAU for all ASa(H).
Keywords:matematika, teorija operatorjev, numerični zaklad, ohranjevalci, mathematics, operator theory, numerical range, preservers, product up to a factor


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica