1. |
2. The Terwilliger algebra of a distance-regular graph of negative typeŠtefko Miklavič, 2009, original scientific article Abstract: Let ▫$\Gamma$▫ denote a distance-regular graph with diameter ▫$D \ge 3$▫. Assume ▫$\Gamma$▫ has classical parameters ▫$(D,b,\alpha,\beta)▫$ with ▫$b < -1$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X(\mathbb{C})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let $A^\ast \in {\mathrm{Mat}}_X(\mathbb{C})$ denote the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ${\mathrm{Mat}}_X(\mathbb{C})$ generated by ▫$A,A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exist exactly two irreducible ▫$T$▫-modules with endpoint 1; their dimensions are ▫$D$▫ and ▫$2D-2$▫. For these ▫$T$▫-modules we display a basis consisting of eigenvectors for ▫$A^\ast$▫, and for each basis we give the action of ▫$A$▫. Found in: osebi Keywords: distance-regular graph, negative type, Terwilliger algebra Published: 15.10.2013; Views: 2728; Downloads: 105
Full text (0,00 KB) |
3. |
4. |
5. |
6. |
7. Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0Štefko Miklavič, 2008, original scientific article Abstract: Let ▫$\Gamma$▫ denote a ▫$Q$▫-polynomial distance-regular graph with diameter ▫$D \ge 3$▫ and intersection numbers ▫$a_1=0$▫, ▫$a_2 \ne 0$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let denote $A^\ast \in {\mathrm{Mat}}_X ({\mathbb{C}})$ the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫$A{\mathrm{Mat}}_X ({\mathbb{C}})$▫ generated by ▫$A$▫, ▫$A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exists a unique irreducible ▫$T$▫-module ▫$W$▫ with endpoint 1. We show that ▫$W$▫ has dimension ▫$2D-2$▫. We display a basis for ▫$W$▫ which consists of eigenvectors for ▫$A^\ast$▫. We display the action of ▫$A$▫ on this basis. We show that ▫$W$▫ appears in the standard module of ▫$\Gamma$▫ with multiplicity ▫$k-1$▫, where ▫$k$▫ is the valency of ▫$\Gamma$▫. Found in: osebi Keywords: mathematics, graph theory, adjacency matrix, distance-regular graph, Terwilliger algebra Published: 15.10.2013; Views: 3242; Downloads: 25
Full text (0,00 KB) |
8. |
9. Leonard triples and hypercubesŠtefko Miklavič, 2007, original scientific article Abstract: Let ▫$V$▫ denote a vector space over ▫$\mathbb{C}$▫ with finite positive dimension. By a Leonard triple on ▫$V$▫ we mean an ordered triple of linear operators on ▫$V$▫ such that for each of these operators there exists a basis of ▫$V$▫ with respect to which the matrix representing that operator is diagonal and the matrices representing the other two operators are irreducible tridiagonal. Let ▫$D$▫ denote a positive integer and let ▫${\mathcal{Q}}_D$▫ denote the graph of the ▫$D$▫-dimensional hypercube. Let ▫$X$ denote the vertex set of ▫${\mathcal{Q}}_D$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫${\mathcal{Q}}_D$▫. Fix ▫$x \in X$▫ and let ▫$A^\ast \in {\mathrm{Mat}}_X({\mathbb{C}})$▫ denote the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫${\mathrm{Mat}}_X({\mathbb{C}})$ generated by ▫$A,A^\ast$▫. We refer to ▫$T$▫ as the Terwilliger algebra of ▫${\mathcal{Q}}_D$▫ with respect to ▫$x$▫. The matrices ▫$A$▫ and ▫$A^\ast$▫ are related by the fact that ▫$2iA = A^\ast A^\varepsilon - A^\varepsilon A^\ast$▫ and ▫$2iA^\ast = A^\varepsilon A - AA^\varepsilon$▫, where ▫$2iA^\varepsilon = AA^\ast - A^\ast A$▫ and ▫$i^2 = -1$▫. We show that the triple ▫$A$▫, ▫$A^\ast$▫, ▫$A^\varepsilon$▫ acts on each irreducible ▫$T$▫-module as a Leonard triple. We give a detailed description of these Leonard triples. Found in: osebi Keywords: mathematics, graph theory, Leonard triple, distance-regular graph, hypercube, Terwilliger algebra Published: 15.10.2013; Views: 2914; Downloads: 115
Full text (0,00 KB) |
10. |