1. |
2. |
3. |
4. |
5. |
6. On non-normal arc-transitive 4-valent dihedrantsBoštjan Kuzman, István Kovács, Aleksander Malnič, 2010, original scientific article Abstract: Let ▫$X$▫ be a connected non-normal 4-valent arc-transitive Cayley graph on a dihedral group ▫$D_n$▫ such that ▫$X$▫ is bipartite, with the two bipartition sets being the two orbits of the cyclic subgroup within ▫$D_n$▫. It is shown that ▫$X$▫ is isomorphic either to the lexicographic product ▫$C_n[2K_1]$▫ with ▫$n \geq 4$▫ even, or to one of the five sporadic graphs on 10, 14, 26, 28 and 30 vertices, respectively. Found in: osebi Keywords: Cayley graph, arc transitivity, dihedral group Published: 15.10.2013; Views: 3133; Downloads: 113
Full text (0,00 KB) |
7. Characterization of edge-transitive 4-valent bicirculantsBoštjan Kuzman, István Kovács, Aleksander Malnič, Steve Wilson, 2012, original scientific article Abstract: Bicirkulant je graf, ki dopušča avtomorfizem z natanko dvema orbitama vozlišč enake velikosti. V članku so karakterizirani vsi neizomorfni 4-valentni povezavno tranzitivni bicirkulanti. Posledično je izpeljana karakterizacija 4-valentnih ločno tranzitivnih dihedrantov. Found in: osebi Keywords: matematika, teorija grafov, štirivalenten graf, bicirkulantni graf, Cayleyev graf, povezavno tranzitiven graf, ločno tranzitiven graf, dihedrant, rose window graf, grupa avtomorfizmov Published: 15.10.2013; Views: 3173; Downloads: 136
Full text (0,00 KB) |
8. Rose window graphs underlying rotary mapsKlavdija Kutnar, István Kovács, János Ruff, 2010, published scientific conference contribution Abstract: Given natural numbers ▫$n \ge 3$▫ and ▫$1 \le a$▫, ▫$r \le n-1$▫, the rose window graph ▫$R_n(a,r)$▫ is a quartic graph with vertex set ▫$\{x_i \vert\; i \in {\mathbb Z}_n \} \cup \{y_i \vert\; i \in {\mathbb Z}_n \}$▫ and edge set ▫$\{\{x_i, x_{i+1}\} \vert\; i \in {\mathbb Z}_n \} \cup \{\{y_i, y_{i+1}\} \vert\; i \in {\mathbb Z}_n \} \cup \{\{x_i, y_i\} \vert\; i \in {\mathbb Z}_n\} \cup \{\{x_{i+a}, y_i\} \vert\; i \in {\mathbb Z}_n \}$▫. In this paper rotary maps on rose window graphs are considered. In particular, we answer the question posed in [S. Wilson, Rose window graphs, Ars Math. Contemp. 1 (2008), 7-19. http://amc.imfm.si/index.php/amc/issue/view/5] concerning which of these graphs underlie a rotary map. Found in: osebi Keywords: graph theory, rotary map, edge-transitive graph, covering graph, voltage graph Published: 15.10.2013; Views: 2834; Downloads: 83
Full text (0,00 KB) |
9. |
10. |