1. |
2. A note on a geometric construction of large Cayley graps of given degree and diameterGyörgy Kiss, István Kovács, Klavdija Kutnar, János Ruff, Primož Šparl, 2009, original scientific article Abstract: An infinite series and some sporadic examples of large Cayley graphs with given degree and diameter are constructed. The graphs arise from arcs, caps and other objects of finite projective spaces. Keywords: degree, diameter problem, Moore bound, finite projective spaces Published in RUP: 15.10.2013; Views: 13986; Downloads: 70
Link to full text |
3. |
4. Semiovals contained in the union of three concurrent linesAart Blokhuis, György Kiss, István Kovács, Aleksander Malnič, Dragan Marušič, János Ruff, 2007, original scientific article Abstract: Semiovals which are contained in the union of three concurrent lines are studied. The notion of a strong semioval is introduced, and a complete classification of these objects in PG▫$(2,p)$▫ and PG▫$(2,p^2)$▫, ▫$p$▫ an odd prime, is given. Keywords: mathematics, semioval, group factorization Published in RUP: 15.10.2013; Views: 5109; Downloads: 133
Link to full text |
5. Rose window graphs underlying rotary mapsIstván Kovács, Klavdija Kutnar, János Ruff, 2010, published scientific conference contribution Abstract: Given natural numbers ▫$n \ge 3$▫ and ▫$1 \le a$▫, ▫$r \le n-1$▫, the rose window graph ▫$R_n(a,r)$▫ is a quartic graph with vertex set ▫$\{x_i \vert\; i \in {\mathbb Z}_n \} \cup \{y_i \vert\; i \in {\mathbb Z}_n \}$▫ and edge set ▫$\{\{x_i, x_{i+1}\} \vert\; i \in {\mathbb Z}_n \} \cup \{\{y_i, y_{i+1}\} \vert\; i \in {\mathbb Z}_n \} \cup \{\{x_i, y_i\} \vert\; i \in {\mathbb Z}_n\} \cup \{\{x_{i+a}, y_i\} \vert\; i \in {\mathbb Z}_n \}$▫. In this paper rotary maps on rose window graphs are considered. In particular, we answer the question posed in [S. Wilson, Rose window graphs, Ars Math. Contemp. 1 (2008), 7-19. http://amc.imfm.si/index.php/amc/issue/view/5] concerning which of these graphs underlie a rotary map. Keywords: graph theory, rotary map, edge-transitive graph, covering graph, voltage graph Published in RUP: 15.10.2013; Views: 4391; Downloads: 89
Link to full text |