1. A virus based vaccine combined with IL12 gene therapy eradicates aggressive melanomaNuša Brišar, Katja Šuster, Simona Kranjc Brezar, Andrej Cör, 2025, original scientific article Abstract: Our study introduces a novel bacteriophage-based vaccine strategy and evaluates its antitumor efficacy, both as a standalone therapy and in combination with gene electrotransfer (GET) of interleukin-12 (IL-12) plasmids. Using phage display technology, we produced engineered M13 bacteriophages expressing tumour peptides MAGE-A1, gp100, or MART-1/MELAN-A on the surface of the capsid. The therapeutic potential of bacteriophage vaccination alone or in combination with GET IL-12 was tested in vivo in a mouse malignant melanoma model. Response to treatment was further characterized by histological and immunohistochemical analyses of tumour tissue. No negative side effects were observed during treatment in mice. Engineered bacteriophage therapy significantly delayed tumour growth. GET IL-12 contributed to the therapeutic effect of engineered bacteriophages and increased tumour growth delay. Both therapies had a synergistic effect and led to complete responses in 30% of cases. Histological and immunohistochemical analyses have shown that both bacteriophage monotherapy and, especially in combination with GET IL-12, activate the immune system and increase the proportion of necrosis and the infiltration of macrophages, CD4 + and CD8 + T lymphocytes in tumours. For the first time, a cocktail of three engineered M13 bacteriophages displaying different melanoma-associated antigens with intratumoral IL-12 gene electrotransfer were applied, demonstrating a synergistic therapeutic effect in a highly aggressive melanoma model. Nanotechnological approaches, such as the use of genetically engineered bacteriophages, offer promising new avenues for the development of anti-tumour vaccines. Keywords: immunotherapy, bacteriophages, bacteriophage display technology, bacteriophage vaccine, interleukin, gene electrotransfer, malignant melanoma Published in RUP: 16.06.2025; Views: 179; Downloads: 3
Link to file |
2. Adjuvant TNF-a therapy to electrochemotherapy with intravenous cisplatin in murine sarcoma exerts synergistic antitumor effectivenessMaja Čemažar, Vesna Todorović, Janez Ščančar, Urša Lampreht Tratar, Monika Savarin, Urška Kamenšek, Simona Kranjc Brezar, Andrej Cör, Gregor Serša, 2015, original scientific article Abstract: Background. Electrochemotherapy is a tumour ablation modality, based on electroporation of the cell membrane, allowing non-permeant anticancer drugs to enter the cell, thus augmenting their cytotoxicity by orders of magnitude. In preclinical studies, bleomycin and cisplatin proved to be the most suitable for clinical use. Intravenous administration of cisplatin for electrochemotherapy is still not widely accepted in the clinics, presumably due to its lower antitumor effectiveness, but adjuvant therapy by immunomodulatory or vascular-targeting agents could provide a way for its potentiation. Hence, the aim of the present study was to explore the possibility of adjuvant tumour necrosis factor % (TNF-%) therapy to potentiate antitumor effectiveness of electrochemotherapy with intravenous cisplatin administration in murine sarcoma. Materials and methods. In vivo study was designed to evaluate the effect of TNF-% applied before or after the electrochemotherapy and to evaluate the effect of adjuvant TNF-% on electrochemotherapy with different cisplatin doses. Results. A synergistic interaction between TNF-% and electrochemotherapy was observed. Administration of TNF-% before the electrochemotherapy resulted in longer tumour growth delay and increased tumour curability, and was significantly more effective than TNF-% administration after the electrochemotherapy. Tumour analysis revealed increased platinum content in tumours, TNF-% induced blood vessel damage and increased tumour necrosis after combination of TNF-% and electrochemotherapy, indicating an anti-vascular action of TNF-%. In addition, immunomodulatory effect might have contributed to curability rate of the tumours. Conclusion. Adjuvant intratumoural TNF-% therapy synergistically contributes to electrochemotherapy with intravenous cisplatin administration. Due to its potentiation at all doses of cisplatin, the combined treatment is predicted to be effective also in tumours, where the drug concentration is suboptimal or in bigger tumours, where electrochemotherapy with intravenous cisplatin is not expected to be sufficiently effective. Keywords: electrochemotherapy, TNF, adjuvant immunotherapy, cisplatin Published in RUP: 09.08.2016; Views: 6981; Downloads: 138
Link to full text |
3. Endoglin (CD105) silencing mediated by shRNA under the control of Endothelin-1 promoter for targeted gene therapy of MelanomaNataša Tešić, Urška Kamenšek, Gregor Serša, Simona Kranjc Brezar, Monika Savarin, Urša Lampreht Tratar, Véronique Préat, Gaëlle Vandermeulen, Miha Butinar, Boris Turk, Maja Čemažar, 2015, original scientific article Abstract: Endoglin (CD105), a transforming growth factor (TGF)-% coreceptor, and endothelin-1, a vasoconstrictor peptide, are both overexpressed in tumor endothelial and melanoma cells. Their targeting is therefore a promising therapeutic approach for melanoma tumors. The aim of our study was to construct a eukaryotic expression plasmid encoding the shRNA molecules against CD105 under the control of endothelin-1 promoter and to evaluate its therapeutic potential both in vitro in murine B16F10-luc melanoma and SVEC4-10 endothelial cells and in vivo in mice bearing highly metastatic B16F10-luc tumors. Plasmid encoding shRNA against CD105 under the control of the constitutive U6 promoter was used as a control. We demonstrated the antiproliferative and antiangiogenic effects of both plasmids in SVEC4-10 cells, as well as a moderate antitumor and pronounced antimetastatic effect in B16F10-luc tumors in vivo. Our results provide evidence that targeting melanoma with shRNA molecules against CD105 under the control of endothelin-1 promoter is a feasible and effective treatment, especially for the reduction of metastatic spread. Keywords: melanoma, electroporation, endoglin (CD105), endothelin-1, gene therapy Published in RUP: 14.10.2015; Views: 5046; Downloads: 134
Link to full text |