1. A ▫$C^s$▫-smooth mixed degree and regularity isogeometric spline space over planar multi-patch domainsMario Kapl, Aljaž Kosmač, Vito Vitrih, 2026, original scientific article Abstract: We construct over a given bilinear multi-patch domain a novel $C^s$-smooth mixed degree and regularity isogeometric spline space, which possesses the degree $p=2s+1$ and regularity $r=s$ in a small neighborhood around the edges and vertices, and the degree~$\widetilde{p} \leq p$ with regularity $\widetilde{r} = \widetilde{p}-1 \geq r$ in all other parts of the domain. Our proposed approach relies on the technique Kapl and Vitrih (2021), which requires for the $C^s$-smooth isogeometric spline space a degree at least $p=2s+1$ on the entire multi-patch domain. Similar to Kapl and Vitrih (2021), the $C^s$-smooth mixed degree and regularity spline space is generated as the span of basis functions that correspond to the individual patches, edges and vertices of the domain. The reduction of degrees of freedom for the functions in the interior of the patches is achieved by introducing an appropriate mixed degree and regularity underlying spline space over $[0,1]^2$ to define the functions on the single patches. We further extend our construction with a few examples to the class of bilinear-like $G^8$ multi-patch parameterizations (Kapl and Vitrih (2018); Kapl and Vitrih (2021)), which enables the design of multi-patch domains having curved boundaries and interfaces. Finally, the great potential of the $C^8$-smooth mixed degree and regularity isogeometric spline space for performing isogeometric analysis is demonstrated by several numerical examples of solving two particular high order partial differential equations, namely the biharmonic and triharmonic equation, via the isogeometric Galerkin method. Keywords: isogeometric analysis, Galerkin method, C^s-smoothness, mixed degree and regularity spline space, multi-patch domain Published in RUP: 01.07.2025; Views: 113; Downloads: 3
Full text (3,76 MB) This document has more files! More... |
2. A note on girth-diameter cagesGabriela Araujo-Pardo, Marston D. E. Conder, Natalia García-Colín, György Kiss, Dimitri Leemans, 2025, original scientific article Abstract: In this paper we introduce a problem closely related to the Cage Problem and the Degree Diameter Problem. For integers k ≥ 2, g ≥ 3 and d ≥ 1, we define a (k; g, d)-graph to be a k-regular graph with girth g and diameter d. We denote by n₀(k; g, d) the smallest possible order of such a graph, and, if such a graph exists, we call it a (k; g, d)-cage. In particular, we focus on (k; 5, 4)-graphs. We show that n₀(k; 5, 4) ≥ k² + k + 2 for all k, and report on the determination of all (k; 5, 4)-cages for k = 3, 4 and 5 and of examples with k = 6, and describe some examples of (k; 5, 4)-graphs which prove that n₀(k; 5, 4) ≤ 2k² for infinitely many k. Keywords: cages, girth, degree-diameter problem Published in RUP: 10.06.2025; Views: 188; Downloads: 7
Full text (378,53 KB) This document has more files! More... |
3. |
4. |
5. |
6. |
7. |
8. |
9. |
10. O ekstremnih grafih z dano stopnjo in premerom/ožino : doktorska disertacijaSlobodan Filipovski, 2018, doctoral dissertation Keywords: adjacency matrix, antipodal graphs, cages, excess, defect, Ramanujan graphs, selfrepeats, degree/diameter problem, spectrum, Moore graphs, asymptotic density, distance matrices, Bermond and Bollobas problem Published in RUP: 21.01.2019; Views: 4292; Downloads: 0 |