Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 9 / 9
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The Sierpiński product of graphs
Jurij Kovič, Tomaž Pisanski, Sara Sabrina Zemljič, Arjana Žitnik, 2023, izvirni znanstveni članek

Opis: In this paper we introduce a product-like operation that generalizes the construction of the generalized Sierpiński graphs. Let ▫$G, \, H$▫ be graphs and let ▫$f: V(G) \to V(H)$▫ be a function. Then the Sierpiński product of graphs ▫$G$▫ and ▫$H$▫ with respect to ▫$f$▫, denoted by ▫$G\otimes_f H$▫, is defined as the graph on the vertex set ▫$V(G) \times V(H)$▫, consisting of ▫$|V(G)|$▫ copies of ▫$H$▫; for every edge ▫$\{g, g'\}$▫ of ▫$G▫$ there is an edge between copies ▫$gH$▫ and ▫$g'H$▫ of form ▫$\{(g, f(g'), (g', f(g))\}$▫. Some basic properties of the Sierpiński product are presented. In particular, we show that the graph ▫$G\otimes_f H$▫ is connected if and only if both graphs ▫$G$▫ and ▫$H$▫ are connected and we present some conditions that ▫$G, \, H$▫ must fulfill for ▫$G\otimes_f H$▫ to be planar. As for symmetry properties, we show which automorphisms of ▫$G$▫ and ▫$H$▫ extend to automorphisms of ▫$G\otimes_f H$▫. In several cases we can also describe the whole automorphism group of the graph ▫$G\otimes_f H$▫. Finally, we show how to extend the Sierpiński product to multiple factors in a natural way. By applying this operation ▫$n$▫ times to the same graph we obtain an alternative approach to the well-known ▫$n$▫-th generalized Sierpiński graph.
Ključne besede: Sierpiński graphs, graph products, connectivity, planarity, symmetry
Objavljeno v RUP: 06.11.2023; Ogledov: 533; Prenosov: 4
.pdf Celotno besedilo (526,44 KB)

2.
Regular polygonal systems
Jurij Kovič, 2019, izvirni znanstveni članek

Ključne besede: regular polygonal system, boundary code, face vector, symmetry group, reconstructibility from the boundary
Objavljeno v RUP: 03.01.2022; Ogledov: 1054; Prenosov: 18
.pdf Celotno besedilo (353,82 KB)

3.
4.
Classification of convex polyhedra by their rotational orbit Euler characteristic
Jurij Kovič, 2017, izvirni znanstveni članek

Opis: Let ▫$\mathcal P$▫ be a polyhedron whose boundary consists of flat polygonal faces on some compact surface ▫$S(\mathcal P)$▫ (not necessarily homeomorphic to the sphere ▫$S^{2}$)▫. Let ▫$vo_{R}(\mathcal P), eo_{R}(\mathcal P)$▫, ▫$ fo_{R}(\mathcal P)$▫ be the numbers of rotational orbits of vertices, edges and faces, respectively, determined by the group ▫$G = G_{R}(P)$▫ of all the rotations of the Euclidean space ▫$E^{3}$▫ preserving ▫$\mathcal P$▫. We define the ''rotational orbit Euler characteristic'' of ▫$\mathcal P$▫ as the number ▫$Eo_{R}(\mathcal P) = vo_{R}(\mathcal P) - eo_{R}(\mathcal P) + fo_{R}(\mathcal P)$▫. Using the Burnside lemma we obtain the lower and the upper bound for ▫$Eo_{R}(\mathcal P)$▫ in terms of the genus of the surface ▫$S(P)$▫. We prove that ▫$Eo_{R} \in \lbrace 2,1,0,-1\rbrace $▫ for any convex polyhedron ▫$\mathcal P$▫. In the non-convex case ▫$Eo_{R}$▫ may be arbitrarily large or small.
Ključne besede: polyhedron, rotational orbit, Euler characteristic
Objavljeno v RUP: 02.01.2022; Ogledov: 995; Prenosov: 19
.pdf Celotno besedilo (272,96 KB)

5.
6.
Matematične metode - teorija, izbrana poglavja : drugo učno gradivo
Jurij Kovič, 2020, drugo učno gradivo

Ključne besede: matematične metode
Objavljeno v RUP: 02.07.2020; Ogledov: 1830; Prenosov: 33
URL Povezava na celotno besedilo

7.
Kratka zgodovina poliedrov : drugo učno gradivo
Jurij Kovič, 2020, drugo učno gradivo

Ključne besede: poliedri, zgodovina matematike
Objavljeno v RUP: 02.07.2020; Ogledov: 2298; Prenosov: 26
URL Povezava na celotno besedilo

8.
Leonhard Euler (1707 - 1783) - univerzalni matematik : drugo učno gradivo
Jurij Kovič, 2020, drugo učno gradivo

Ključne besede: Leonhard Euler, matematik, zgodovina matematike
Objavljeno v RUP: 02.07.2020; Ogledov: 1949; Prenosov: 20
URL Povezava na celotno besedilo

9.
Uporaba simetrijskih grafov pri konveksnih poliedrih
Jurij Kovič, 2013, doktorska disertacija

Opis: Grafe praporov in simetrijske grafe, ki so jih odkrili okrog leta 1980, so doslej uporabljali predvsem za klasifikacijo zemljevidov - to je grafov, celično vloženih v kompaktne ploskve. Namen te disertacije je prikazati nekaj razširitev njihove uporabe. V prvem delu disertacije uporabimo simetrijske grafe pri klasifikaciji poliedrov z regularnimi poligonskimi ali zvezdastimi lici. Podamo tudi karakterizacijo teh poliedrov z minimalnim številom parametrov. V drugem delu disertacije na podoben način klasificiramo molekule,sestavljene iz pravilnih šestkotniških gradnikov, pri čemer upoštevamo tudi njihove točkovne grupe. V tretjem delu disertacije pojem simetrijskih grafov razširimo na hiperzemljevide in geometrijske konfiguracije, nazadnje pa tudi na sferne poliedre in sferne molekule.
Ključne besede: polieder, graf praporov, simetrijski graf, simetrijska grupa
Objavljeno v RUP: 15.10.2013; Ogledov: 3205; Prenosov: 60
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici