Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
On regular graphs with Šoltés vertices
Nino Bašić, Martin Knor, Riste Škrekovski, 2025, izvirni znanstveni članek

Opis: Let ▫$W(G)$▫ be the Wiener index of a graph ▫$G$▫. We say that a vertex ▫$v \in V(G)$▫ is a Šoltés vertex in ▫$G$▫ if ▫$W(G - v) = W(G)$▫, i.e. the Wiener index does not change if the vertex ▫$v$▫ is removed. In 1991, Šoltés posed the problem of identifying all connected graphs ▫$G$▫ with the property that all vertices of ▫$G$▫ are Šoltés vertices. The only such graph known to this day is ▫$C_{11}$▫. As the original problem appears to be too challenging, several relaxations were studied: one may look for graphs with at least ▫$k$▫ Šoltés vertices; or one may look for ▫$\alpha$▫-Šoltés graphs, i.e. graphs where the ratio between the number of Šoltés vertices and the order of the graph is at least ▫$\alpha$▫. Note that the original problem is, in fact, to find all ▫$1$▫-Šoltés graphs. We intuitively believe that every ▫$1$▫-Šoltés graph has to be regular and has to possess a high degree of symmetry. Therefore, we are interested in regular graphs that contain one or more Šoltés vertices. In this paper, we present several partial results. For every ▫$r\ge 1$▫ we describe a construction of an infinite family of cubic ▫$2$▫-connected graphs with at least ▫$2^r$▫ Šoltés vertices. Moreover, we report that a computer search on publicly available collections of vertex-transitive graphs did not reveal any ▫$1$▫-Šoltés graph. We are only able to provide examples of large ▫$\frac{1}{3}$▫-Šoltés graphs that are obtained by truncating certain cubic vertex-transitive graphs. This leads us to believe that no ▫$1$▫-Šoltés graph other than ▫$C_{11}$▫ exists.
Ključne besede: Šoltés problem, Wiener index, regular graphs, cubic graphs, Cayley graph, Šoltés vertex
Objavljeno v RUP: 10.09.2025; Ogledov: 184; Prenosov: 2
.pdf Celotno besedilo (456,75 KB)

Iskanje izvedeno v 0.01 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici