1. On [plus/minus] 1 eigenvectors of graphsDragan Stevanović, 2016, izvirni znanstveni članek Opis: While discussing his spectral bound on the independence number of a graph, Herbert Wilf asked back in 1986 what kind of a graph admits an eigenvector consisting solely of ▫$\pm 1$▫ entries? We prove that Wilf's problem is NP-complete, but also that the set of graphs having a ▫$\pm 1$▫ eigenvector is quite rich, being closed under a number of different graph compositions. Ključne besede: eigenvector, adjacency matrix, Wilf's problem Objavljeno v RUP: 02.01.2022; Ogledov: 1486; Prenosov: 32 Celotno besedilo (325,02 KB) |
2. |
3. |
4. O ekstremnih grafih z dano stopnjo in premerom/ožino : doktorska disertacijaSlobodan Filipovski, 2018, doktorska disertacija Ključne besede: adjacency matrix, antipodal graphs, cages, excess, defect, Ramanujan graphs, selfrepeats, degree/diameter problem, spectrum, Moore graphs, asymptotic density, distance matrices, Bermond and Bollobas problem Objavljeno v RUP: 21.01.2019; Ogledov: 3542; Prenosov: 0 |
5. Adjacency preservers, symmetric matrices, and coresMarko Orel, 2012, izvirni znanstveni članek Opis: It is shown that the graph ▫$\Gamma_n$▫ that has the set of all ▫$n \times n$▫ symmetric matrices over a finite field as the vertex set, with two matrices being adjacent if and only if the rank of their difference equals one, is a core if ▫$n \ge 3$▫. Eigenvalues of the graph ▫$\Gamma_n$▫ are calculated as well. Ključne besede: adjacency preserver, symmetric matrix, finite field, eigenvalue of a graph, coloring, quadratic form Objavljeno v RUP: 15.10.2013; Ogledov: 3892; Prenosov: 144 Povezava na celotno besedilo |
6. Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0Štefko Miklavič, 2008, izvirni znanstveni članek Opis: Let ▫$\Gamma$▫ denote a ▫$Q$▫-polynomial distance-regular graph with diameter ▫$D \ge 3$▫ and intersection numbers ▫$a_1=0$▫, ▫$a_2 \ne 0$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let denote $A^\ast \in {\mathrm{Mat}}_X ({\mathbb{C}})$ the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫$A{\mathrm{Mat}}_X ({\mathbb{C}})$▫ generated by ▫$A$▫, ▫$A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exists a unique irreducible ▫$T$▫-module ▫$W$▫ with endpoint 1. We show that ▫$W$▫ has dimension ▫$2D-2$▫. We display a basis for ▫$W$▫ which consists of eigenvectors for ▫$A^\ast$▫. We display the action of ▫$A$▫ on this basis. We show that ▫$W$▫ appears in the standard module of ▫$\Gamma$▫ with multiplicity ▫$k-1$▫, where ▫$k$▫ is the valency of ▫$\Gamma$▫. Ključne besede: mathematics, graph theory, adjacency matrix, distance-regular graph, Terwilliger algebra Objavljeno v RUP: 15.10.2013; Ogledov: 5898; Prenosov: 33 Povezava na celotno besedilo |