1. Cyclic m-DCI-groups and m-CI-groupsIstván Kovács, Luka Šinkovec, 2025, izvirni znanstveni članek Opis: Based on the earlier work of Li from 1997 and Dobson from 2008, in this paper we complete the classification of cyclic m-DCI-groups and m-CI-groups. For a positive integer m such that m ≥ 3, we show that the group ℤ_(n) is an m-DCI-group if and only if n is not divisible by 8 nor by p² for any odd prime p < m. Furthermore, if m ≥ 6, then we show that ℤn is an m-CI-group if and only if either n ∈ {8, 9, 18}, or n ∉ {8, 9, 18} and n is not divisible by 8 nor by p² for any odd prime p < (m - 1)/2. Ključne besede: Cayley graph, cyclic group, m-CI-group, m-DCI-group Objavljeno v RUP: 01.04.2025; Ogledov: 215; Prenosov: 6
Celotno besedilo (446,08 KB) Gradivo ima več datotek! Več... |
2. Posplošitev Lijeve domneve in popolna klasifikacija cikličnih m-(D)CI-grup : magistrsko deloLuka Šinkovec, 2023, magistrsko delo Ključne besede: (un)directed Cayley graph, cyclic group, (un)directed circulant graph, Cayley isomorphism, (un)directed CI-graph, (D)CI-group, m-(D)CI-group, key, generalised multiplier Objavljeno v RUP: 11.09.2023; Ogledov: 1259; Prenosov: 20
Celotno besedilo (520,27 KB) |
3. |
4. |
5. |
6. Decomposition of skew-morphisms of cyclic groupsIstván Kovács, Roman Nedela, 2011, izvirni znanstveni članek Opis: A skew-morphism of a group ▫$H$▫ is a permutation ▫$\sigma$▫ of its elements fixing the identity such that for every ▫$x, y \in H$▫ there exists an integer ▫$k$▫ such that ▫$\sigma (xy) = \sigma (x)\sigma k(y)$▫. It follows that group automorphisms are particular skew-morphisms. Skew-morphisms appear naturally in investigations of maps on surfaces with high degree of symmetry, namely, they are closely related to regular Cayley maps and to regular embeddings of the complete bipartite graphs. The aim of this paper is to investigate skew-morphisms of cyclic groups in the context of the associated Schur rings. We prove the following decomposition theorem about skew-morphisms of cyclic groups ▫$\mathbb Z_n$▫: if ▫$n = n_{1}n_{2}$▫ such that ▫$(n_{1}n_{2}) = 1$▫, and ▫$(n_{1}, \varphi (n_{2})) = (\varphi (n_{1}), n_{2}) = 1$▫ (▫$\varphi$▫ denotes Euler's function) then all skew-morphisms ▫$\sigma$▫ of ▫$\mathbb Z_n$▫ are obtained as ▫$\sigma = \sigma_1 \times \sigma_2$▫, where ▫$\sigma_i$▫ are skew-morphisms of ▫$\mathbb Z_{n_i}, \; i = 1, 2$▫. As a consequence we obtain the following result: All skew-morphisms of ▫$\mathbb Z_n$▫ are automorphisms of ▫$\mathbb Z_n$▫ if and only if ▫$n = 4$▫ or ▫$(n, \varphi(n)) = 1$▫. Ključne besede: cyclic group, permutation group, skew-morphism, Schur ring Objavljeno v RUP: 15.10.2013; Ogledov: 5030; Prenosov: 112
Povezava na celotno besedilo |