Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
3.
Vertex cover at distance on H-free graphs
Clément Jean Dallard, Mirza Krbezlija, Martin Milanič, 2021, objavljeni znanstveni prispevek na konferenci

Ključne besede: distance-k vertex cover, H-free graph, np-completeness, polynomial-time algorithm, dichotomy
Objavljeno v RUP: 16.07.2021; Ogledov: 1786; Prenosov: 31
URL Povezava na celotno besedilo

4.
Distance-transitive graphs admit semiregular automorphisms
Klavdija Kutnar, Primož Šparl, 2010, izvirni znanstveni članek

Opis: A distance-transitive graph is a graph in which for every two ordered pairs ofvertices ▫$(u,v)$▫ and ▫$(u',v')$▫ such that the distance between ▫$u$▫ and ▫$v$▫ is equal to the distance between ▫$u'$▫ and ▫$v'$▫ there exists an automorphism of the graph mapping ▫$u$▫ to ▫$u'$▫ and ▫$v$▫ to ▫$v'$▫. A semiregular element of a permutation group is anon-identity element having all cycles of equal length in its cycle decomposition. It is shown that every distance-transitive graph admits a semiregular automorphism.
Ključne besede: distance-transitive graph, vertex-transitive graph, semiregular automorphism, permutation group
Objavljeno v RUP: 15.10.2013; Ogledov: 3580; Prenosov: 99
URL Povezava na celotno besedilo

5.
Distance-balanced graphs: Symmetry conditions
Klavdija Kutnar, Aleksander Malnič, Dragan Marušič, Štefko Miklavič, 2006, izvirni znanstveni članek

Opis: A graph ▫$X$▫ is said to be distance-balanced if for any edge ▫$uv$▫ of ▫$X$▫, the number of vertices closer to ▫$u$▫ than to ▫$v$▫ is equal to the number of vertices closer to ▫$v$▫ than to ▫$u$▫. A graph ▫$X$▫ is said to be strongly distance-balanced if for any edge ▫$uv$▫ of ▫$X$▫ and any integer ▫$k$▫, the number of vertices at distance ▫$k$▫ from ▫$u$▫ and at distance ▫$k+1$▫ from ▫$v$▫ is equal to the number of vertices at distance ▫$k+1$▫ from ▫$u$▫ and at distance ▫$k$▫ from ▫$v$▫. Exploring the connection between symmetry properties of graphs and the metric property of being (strongly) distance-balanced is the main theme of this article. That a vertex-transitive graph is necessarily strongly distance-balanced and thus also distance-balanced is an easy observation. With only a slight relaxation of the transitivity condition, the situation changes drastically: there are infinite families of semisymmetric graphs (that is, graphs which are edge-transitive, but not vertex-transitive) which are distance-balanced, but there are also infinite families of semisymmetric graphs which are not distance-balanced. Results on the distance-balanced property in product graphs prove helpful in obtaining these constructions. Finally, a complete classification of strongly distance-balanced graphs is given for the following infinite families of generalized Petersen graphs: GP▫$(n,2)$▫, GP▫$(5k+1,k)$▫, GP▫$(3k 3,k)$▫, and GP▫$(2k+2,k)$▫.
Ključne besede: graph theory, graph, distance-balanced graphs, vertex-transitive, semysimmetric, generalized Petersen graph
Objavljeno v RUP: 15.10.2013; Ogledov: 5077; Prenosov: 91
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.02 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici