Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 10
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
Treewidth versus clique number in graph classes with a forbidden structure
Clément Jean Dallard, Martin Milanič, Kenny Štorgel, 2020, objavljeni znanstveni prispevek na konferenci

Ključne besede: graph class, treewidth, clique number
Objavljeno v RUP: 09.11.2020; Ogledov: 1792; Prenosov: 36
URL Povezava na celotno besedilo

3.
4.
Minimal separators in graph classes defined by small forbidden induced subgraphs
Martin Milanič, Nevena Pivač, 2019, objavljeni znanstveni prispevek na konferenci

Ključne besede: minimal separator, hereditary graph class, forbidden induced subgraph
Objavljeno v RUP: 16.10.2019; Ogledov: 2195; Prenosov: 105
URL Povezava na celotno besedilo

5.
6.
The price of connectivity for cycle transversals
Tatiana Romina Hartinger, Matthew Johnson, Martin Milanič, Daniël Paulusma, 2015, objavljeni znanstveni prispevek na konferenci

Ključne besede: price of connectivity, hereditary graph class, path, cycle, transversal
Objavljeno v RUP: 08.08.2016; Ogledov: 3276; Prenosov: 123
URL Povezava na celotno besedilo

7.
8.
Graph classes : from practice to theory
Martin Milanič, 2015, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje)

Ključne besede: uporaba teorije grafov, razred grafov, pragoven graf, problem nahrbtnika, application of graph theory, graph class, threshold graph, knapsack problem
Objavljeno v RUP: 08.08.2016; Ogledov: 2945; Prenosov: 19
URL Povezava na celotno besedilo

9.
10.
A note on domination and independence-domination numbers of graphs
Martin Milanič, 2013, objavljeni znanstveni prispevek na konferenci

Opis: Vizing's conjecture is true for graphs ▫$G$▫ satisfying ▫$\gamma^i(G) = \gamma(G)$▫, where ▫$\gamma(G)$▫ is the domination number of a graph ▫$G$▫ and ▫$\gamma^i(G)$▫ is the independence-domination number of ▫$G$▫, that is, the maximum, over all independent sets ▫$I$▫ in ▫$G$▫, of the minimum number of vertices needed to dominate ▫$I$▫. The equality ▫$\gamma^i(G) = \gamma(G)$▫ is known to hold for all chordal graphs and for chordless cycles of length ▫$0 \pmod{3}$▫. We prove some results related to graphs for which the above equality holds. More specifically, we show that the problems of determining whether ▫$\gamma^i(G) = \gamma(G) = 2$▫ and of verifying whether ▫$\gamma^i(G) \ge 2$▫ are NP-complete, even if ▫$G$▫ is weakly chordal. We also initiate the study of the equality ▫$\gamma^i = \gamma$▫ in the context of hereditary graph classes and exhibit two infinite families of graphs for which ▫$\gamma^i < \gamma$▫.
Ključne besede: Vizing's conjecture, domination number, independence-domination number, weakly chordal graph, NP-completeness, hereditary graph class, IDD-perfect graph
Objavljeno v RUP: 15.10.2013; Ogledov: 3578; Prenosov: 131
.pdf Celotno besedilo (300,57 KB)

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici