Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 10 / 45
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
Mathematical aspects of Wiener index
Martin Knor, Riste Škrekovski, Aleksandra Tepeh, 2016, izvirni znanstveni članek

Opis: The Wiener index (i.e., the total distance or the transmission number), defined as the sum of distances between all unordered pairs of vertices in a graph, is one of the most popular molecular descriptors. In this article we summarize some results, conjectures and problems on this molecular descriptor, with emphasis on works we were involved in.
Ključne besede: Wiener index, total distance, topological index, molecular descriptor, chemical graph theory
Objavljeno v RUP: 03.01.2022; Ogledov: 889; Prenosov: 25
.pdf Celotno besedilo (434,58 KB)

On minimal forbidden subgraphs for the class of EDM-graphs
Gašper Jaklič, Jolanda Modic, 2015, izvirni znanstveni članek

Opis: In this paper, a relation between graph distance matrices and Euclidean distance matrices (EDM) is considered. Graphs, for which the distance matrix is not an EDM (NEDM-graphs), are studied. All simple connected non-isomorphic graphs on ▫$n \le 8$▫ nodes are analysed and a characterization of the smallest NEDM-graphs, i.e., the minimal forbidden subgraphs, is given. It is proven that bipartite graphs and some subdivisions of the smallest NEDM-graphs are NEDM-graphs, too.
Ključne besede: graph theory, graph, Euclidean distance matrix, distance, eigenvalue
Objavljeno v RUP: 31.12.2021; Ogledov: 820; Prenosov: 17
.pdf Celotno besedilo (711,65 KB)

Edge-contributions of some topological indices and arboreality of molecular graphs
Tomaž Pisanski, Janez Žerovnik, 2009, izvirni znanstveni članek

Opis: Some graph invariants can be computed by summing certain values, called edge-contributions over all edges of graphs. In this note we use edge-contributions to study relationships among three graph invariants, also known as topological indices in mathematical chemistry: Wiener index, Szeged index and recently introduced revised Szeged index. We also use the quotient between the Wiener index and the revised Szeged index to study tree-likeness of graphs.
Ključne besede: mathematical chemistry, chemical graph theory, topological index, revised Szeged index
Objavljeno v RUP: 30.12.2021; Ogledov: 662; Prenosov: 18
.pdf Celotno besedilo (158,93 KB)

Scaling laws of graphs of 3D protein structures
Jure Pražnikar, 2021, izvirni znanstveni članek

Ključne besede: graph theory, scaling law, macromolecules, radius of gyration, eccentricity
Objavljeno v RUP: 04.02.2021; Ogledov: 958; Prenosov: 35
URL Povezava na celotno besedilo

Reachability relations in digraphs
Aleksander Malnič, Dragan Marušič, Norbert Seifter, Primož Šparl, Boris Zgrablić, 2008, izvirni znanstveni članek

Opis: In this paper we study reachability relations on vertices of digraphs, informally defined as follows. First, the weight of a walk is equal to the number of edges traversed in the direction coinciding with their orientation, minus the number of edges traversed in the direction opposite to their orientation. Then, a vertex ▫$u$▫ is ▫$R_k^+$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at u has weight in the interval ▫$[0,k]$▫. Similarly, a vertex ▫$u$▫ is ▫$R_k^-$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at ▫$u$▫ has weight in the interval ▫$[-k,0]$▫. For all positive integers ▫$k$▫, the relations ▫$R_k^+$▫ and ▫$R_k^-$▫ are equivalence relations on the vertex set of a given digraph. We prove that, for transitive digraphs, properties of these relations are closely related to other properties such as having property ▫$\mathbb{Z}$▫, the number of ends, growth conditions, and vertex degree.
Ključne besede: graph theory, digraph, reachability relations, end of a graph, property ▫$\mathbb{Z}$▫, growth
Objavljeno v RUP: 03.04.2017; Ogledov: 2613; Prenosov: 133
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici