1. |
2. |
3. Populacijska dinamika polipov uhatega klobučnjaka (Aurelia aurita s.l.) : vpogled z vidika modeliranjaSara Hočevar, 2016, magistrsko delo Ključne besede: polyps, aurelia aurita, population dynamics, polyp density, density-dependent effects, density-independent effects, modelling, carrying capacity, growth rate Objavljeno v RUP: 19.07.2021; Ogledov: 1841; Prenosov: 24 Povezava na celotno besedilo |
4. |
5. |
6. |
7. Seasonal fluctuations in population dynamics of Aurelia aurita polyps in situ with a modelling perspectiveSara Hočevar, Alenka Malej, Barbara Boldin, Jennifer E. Purcell, 2018, izvirni znanstveni članek Ključne besede: jellyfish bloom, polyp density, asexual reproduction, Scyphozoa, population model, carrying capacity, growth rate, Northern Adriatic Objavljeno v RUP: 02.02.2018; Ogledov: 3069; Prenosov: 175 Povezava na celotno besedilo |
8. Managing sustainable profitAleksander Janeš, Armand Faganel, 2015, objavljeni znanstveni prispevek na konferenci Ključne besede: management, odnosi, dolgoročna stabilnost, merjenje uspešnosti, učinkovitost, trajnostna rast, causal relations, error correction model, long term stability, performance measurement system, short term dynamic, strategy fulfilment, sustainable growth Objavljeno v RUP: 02.04.2017; Ogledov: 4484; Prenosov: 92 Povezava na celotno besedilo |
9. Comparative analysis of tourism-led growth in Slovenia and MontenegroSergej Gričar, Štefan Bojnec, Vesna Karadžić, Svetlana Rakočević, 2016, izvirni znanstveni članek Ključne besede: Slovenia, Montenegro, causality, tourism, economic growth Objavljeno v RUP: 02.04.2017; Ogledov: 3512; Prenosov: 85 Celotno besedilo (160,75 KB) |
10. Reachability relations in digraphsAleksander Malnič, Dragan Marušič, Norbert Seifter, Primož Šparl, Boris Zgrablić, 2008, izvirni znanstveni članek Opis: In this paper we study reachability relations on vertices of digraphs, informally defined as follows. First, the weight of a walk is equal to the number of edges traversed in the direction coinciding with their orientation, minus the number of edges traversed in the direction opposite to their orientation. Then, a vertex ▫$u$▫ is ▫$R_k^+$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at u has weight in the interval ▫$[0,k]$▫. Similarly, a vertex ▫$u$▫ is ▫$R_k^-$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at ▫$u$▫ has weight in the interval ▫$[-k,0]$▫. For all positive integers ▫$k$▫, the relations ▫$R_k^+$▫ and ▫$R_k^-$▫ are equivalence relations on the vertex set of a given digraph. We prove that, for transitive digraphs, properties of these relations are closely related to other properties such as having property ▫$\mathbb{Z}$▫, the number of ends, growth conditions, and vertex degree. Ključne besede: graph theory, digraph, reachability relations, end of a graph, property ▫$\mathbb{Z}$▫, growth Objavljeno v RUP: 02.04.2017; Ogledov: 3109; Prenosov: 136 Povezava na celotno besedilo |