Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


31 - 40 / 41
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
31.
Jordan [tau]-derivations of locally matrix rings
Chen-Lian Chuang, Ajda Fošner, Tsiu Kwen Lee, 2013, izvirni znanstveni članek

Opis: Let ▫$R$▫ be a prime, locally matrix ring of characteristic not 2 and let ▫$Q_{ms}(R)$▫ be the maximal symmetric ring of quotients of ▫$R$▫. Suppose that ▫$\delta \colon R \to Q_{ms}(R)$▫ is a Jordan ▫$\tau$▫-derivation, where ▫$\tau$▫ is an anti-automorphism of $R$. Then there exists ▫$a \in Q_{ms}(R)$▫ such that ▫$\delta(x) = xa - a\tau(x)$▫ for all ▫$x \in R$▫. Let ▫$X$▫ be a Banach space over the field ▫$\mathbb{F}$▫ of real or complex numbers and let ▫$\mathcal{B}(X)$▫ be the algebra of all bounded linear operators on ▫$X$▫. We prove that ▫$Q_{ms}(\mathcal{B}(X)) = \mathcal{B}(X)$▫, which provides the viewpoint of ring theory for some results concerning derivations on the algebra ▫$\mathcal{B}(X)$▫. In particular, all Jordan ▫$\tau$▫-derivations of ▫$\mathcal{B}(X)$▫ are inner if ▫$\dim_{\mathbb{F}} X>1$▫.
Ključne besede: mathematics, algebra, anti-automorphism, locally matrix ring, prime ring, Jordan homomorphism, Jordan ▫$\tau$▫-derivation, Banach space
Objavljeno v RUP: 15.10.2013; Ogledov: 4662; Prenosov: 85
URL Povezava na celotno besedilo

32.
Semiovals contained in the union of three concurrent lines
Aart Blokhuis, György Kiss, István Kovács, Aleksander Malnič, Dragan Marušič, János Ruff, 2007, izvirni znanstveni članek

Opis: Semiovals which are contained in the union of three concurrent lines are studied. The notion of a strong semioval is introduced, and a complete classification of these objects in PG▫$(2,p)$▫ and PG▫$(2,p^2)$▫, ▫$p$▫ an odd prime, is given.
Ključne besede: mathematics, semioval, group factorization
Objavljeno v RUP: 15.10.2013; Ogledov: 3236; Prenosov: 132
URL Povezava na celotno besedilo

33.
On generalized Jordan triple ([alpha], [beta]) [sup] [ast]-derivations and related mappings
Shakir Ali, Ajda Fošner, Maja Fošner, Mohammad Salahuddin Khan, 2013, izvirni znanstveni članek

Opis: Let ▫$R$▫ be a 2-torsion free semiprime ▫$\ast$▫-ring and let ▫$\alpha, \beta$▫ be surjective endomorphisms of ▫$R$▫. The aim of the paper is to show that every generalized Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation on ▫$R$▫ is a generalized Jordan ▫$(\alpha, \beta)^\ast$▫-derivation. This result makes it possible to prove that every generalized Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation on a semisimple ▫$H^\ast$▫-algebra is a generalized Jordan ▫$(\alpha, \beta)^\ast$▫-derivation. Finally, we prove that every Jordan triple left ▫$\alpha^\ast$▫-centralizer on a 2-torsion free semiprime ring is a Jordan left ▫$\alpha^\ast$▫-centralizer.
Ključne besede: mathematics, algebra, semiprime ▫$\ast$▫-ring, ▫$H^\ast$▫-algebra, Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation, generalized Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation, Jordan triple left ▫$\alpha^\ast$▫-centralizer
Objavljeno v RUP: 15.10.2013; Ogledov: 4942; Prenosov: 79
URL Povezava na celotno besedilo

34.
Leonard triples and hypercubes
Štefko Miklavič, 2007, izvirni znanstveni članek

Opis: Let ▫$V$▫ denote a vector space over ▫$\mathbb{C}$▫ with finite positive dimension. By a Leonard triple on ▫$V$▫ we mean an ordered triple of linear operators on ▫$V$▫ such that for each of these operators there exists a basis of ▫$V$▫ with respect to which the matrix representing that operator is diagonal and the matrices representing the other two operators are irreducible tridiagonal. Let ▫$D$▫ denote a positive integer and let ▫${\mathcal{Q}}_D$▫ denote the graph of the ▫$D$▫-dimensional hypercube. Let ▫$X$ denote the vertex set of ▫${\mathcal{Q}}_D$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫${\mathcal{Q}}_D$▫. Fix ▫$x \in X$▫ and let ▫$A^\ast \in {\mathrm{Mat}}_X({\mathbb{C}})$▫ denote the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫${\mathrm{Mat}}_X({\mathbb{C}})$ generated by ▫$A,A^\ast$▫. We refer to ▫$T$▫ as the Terwilliger algebra of ▫${\mathcal{Q}}_D$▫ with respect to ▫$x$▫. The matrices ▫$A$▫ and ▫$A^\ast$▫ are related by the fact that ▫$2iA = A^\ast A^\varepsilon - A^\varepsilon A^\ast$▫ and ▫$2iA^\ast = A^\varepsilon A - AA^\varepsilon$▫, where ▫$2iA^\varepsilon = AA^\ast - A^\ast A$▫ and ▫$i^2 = -1$▫. We show that the triple ▫$A$▫, ▫$A^\ast$▫, ▫$A^\varepsilon$▫ acts on each irreducible ▫$T$▫-module as a Leonard triple. We give a detailed description of these Leonard triples.
Ključne besede: mathematics, graph theory, Leonard triple, distance-regular graph, hypercube, Terwilliger algebra
Objavljeno v RUP: 15.10.2013; Ogledov: 4744; Prenosov: 123
URL Povezava na celotno besedilo

35.
Consistent Cycles in 1/2-Arc-Transitive Graphs
Marko Boben, Štefko Miklavič, Primož Potočnik, 2009, izvirni znanstveni članek

Ključne besede: mathematics, graph theory, 1/2-arc-transitivity, consistent cycle
Objavljeno v RUP: 15.10.2013; Ogledov: 5205; Prenosov: 50
URL Povezava na celotno besedilo

36.
On quartic half-arc-transitive metacirculants
Dragan Marušič, Primož Šparl, 2008, izvirni znanstveni članek

Opis: Following Alspach and Parsons, a metacirculant graph is a graph admitting a transitive group generated by two automorphisms ▫$\rho$▫ and ▫$\sigma$▫, where ▫$\rho$▫ is ▫$(m,n)$▫-semiregular for some integers ▫$m \ge 1$▫, ▫$n \ge 2▫$, and where ▫$\sigma$▫ normalizes ▫$\rho$▫, cyclically permuting the orbits of ▫$\rho$▫ in such a way that ▫$\sigma^m$▫ has at least one fixed vertex. A half-arc-transitive graph is a vertex- and edge- but not arc-transitive graph. In this article quartic half-arc-transitive metacirculants are explored and their connection to the so called tightly attached quartic half-arc-transitive graphs is explored. It is shown that there are three essentially different possibilities for a quartic half-arc-transitive metacirculant which is not tightly attached to exist. These graphs are extensively studied and some infinite families of such graphs are constructed.
Ključne besede: mathematics, graph theory, metacirculant graph, half-arc-transitive graph, tightly attached, automorphism group
Objavljeno v RUP: 15.10.2013; Ogledov: 4375; Prenosov: 133
URL Povezava na celotno besedilo

37.
Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0
Štefko Miklavič, 2008, izvirni znanstveni članek

Opis: Let ▫$\Gamma$▫ denote a ▫$Q$▫-polynomial distance-regular graph with diameter ▫$D \ge 3$▫ and intersection numbers ▫$a_1=0$▫, ▫$a_2 \ne 0$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let denote $A^\ast \in {\mathrm{Mat}}_X ({\mathbb{C}})$ the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫$A{\mathrm{Mat}}_X ({\mathbb{C}})$▫ generated by ▫$A$▫, ▫$A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exists a unique irreducible ▫$T$▫-module ▫$W$▫ with endpoint 1. We show that ▫$W$▫ has dimension ▫$2D-2$▫. We display a basis for ▫$W$▫ which consists of eigenvectors for ▫$A^\ast$▫. We display the action of ▫$A$▫ on this basis. We show that ▫$W$▫ appears in the standard module of ▫$\Gamma$▫ with multiplicity ▫$k-1$▫, where ▫$k$▫ is the valency of ▫$\Gamma$▫.
Ključne besede: mathematics, graph theory, adjacency matrix, distance-regular graph, Terwilliger algebra
Objavljeno v RUP: 15.10.2013; Ogledov: 5324; Prenosov: 33
URL Povezava na celotno besedilo

38.
Identities with generalized skew derivations on Lie ideals
Vincenzo De Filippis, Ajda Fošner, Feng Wei, 2013, izvirni znanstveni članek

Opis: Let ▫$m, n$▫ be two nonzero fixed positive integers, ▫$R$▫ a 2-torsion free prime ring with the right Martindale quotient ring ▫$Q$▫, ▫$L$▫ a non-central Lie ideal of ▫$R$▫, and ▫$\delta$▫ a derivation of ▫$R$▫. Suppose that ▫$\alpha$▫ is an automorphism of ▫$R$▫, ▫$D$▫ a skew derivation of ▫$R$▫ with the associated automorphism ▫$\alpha$▫, and ▫$F$▫ a generalized skew derivation of ▫$R$▫ with the associated skew derivation ▫$D$▫. If ▫$$F(x^{m+n}) = F(x^m)x^n + x^m \delta (x^n)$$▫ is a polynomial identity for ▫$L$▫, then either ▫$R$▫ satisfies the standard polynomial identity ▫$s_4(x_1, x_2, x_3, x_4)$▫ of degree 4, or ▫$F$▫ is a generalized derivation of ▫$R$▫ and ▫$\delta = D$▫. Furthermore, in the latter case one of the following statements holds: (1) ▫$D = \delta = 0$▫ and there exists ▫$a \in Q$▫ such that ▫$F(x) = ax$▫ for all ▫$x \in R$▫; (2) ▫$\alpha$▫ is the identical mapping of ▫$R$▫.
Ključne besede: mathematics, algebra, polynomial identity, generalized skew derivation, prime ring
Objavljeno v RUP: 15.10.2013; Ogledov: 4769; Prenosov: 145
URL Povezava na celotno besedilo

39.
Rank-permutable additive mappings
Anna A. Alieva, Aleksandr Èmilevič Guterman, Bojan Kuzma, 2006, izvirni znanstveni članek

Opis: Let ▫$\sigma$▫ be a fixed non-identical permutation on ▫$k$▫ elements. Additive bijections ▫$T$▫ on the matrix algebra ▫$M_n(\mathbb{F})$▫ over a field ▫$\mathbb{F}$▫ of characteristic zero, with the property that ▫$\rm{rk} (A_1...A_k) = \rm{rk} (A_{\sigma(1)}...A_{\sigma(k)})$▫ implies the same condition on the ▫$T$▫ images, are characterized. It is also shown that the surjectivity assumption can be relaxed, if this property is preserved in both directions.
Ključne besede: mathematics, linearna algebra, matrix algebra, rank, permutation, additive preservers
Objavljeno v RUP: 15.10.2013; Ogledov: 4111; Prenosov: 90
URL Povezava na celotno besedilo

40.
Isomorphism checking of I-graphs
Boris Horvat, Tomaž Pisanski, Arjana Žitnik, 2012, izvirni znanstveni članek

Opis: We consider the class of ▫$I$▫-graphs, which is a generalization of the class of the generalized Petersen graphs. We show that two ▫$I$▫-graphs ▫$I(n, j, k)$▫ and ▫$I(n, j_1, k_1)$▫ are isomorphic if and only if there exists an integer ▫$a$▫ relatively prime to $n$ such that either ▫$\{j_1, k_1\} = \{aj \mod n, \; ak \mod n \}$▫ or ▫$\{j_1, k_1\} = \{aj \mod n, \; -ak \mod n\}$▫. This result has an application in the enumeration of non-isomorphic ▫$I$▫-graphs and unit-distance representations of generalized Petersen graphs.
Ključne besede: mathematics, graph theory, isomorphism, I-graph, generalized Petersen graph
Objavljeno v RUP: 15.10.2013; Ogledov: 4833; Prenosov: 138
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici