Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
A ▫$C^s$▫-smooth mixed degree and regularity isogeometric spline space over planar multi-patch domains
Mario Kapl, Aljaž Kosmač, Vito Vitrih, 2026, izvirni znanstveni članek

Opis: We construct over a given bilinear multi-patch domain a novel $C^s$-smooth mixed degree and regularity isogeometric spline space, which possesses the degree $p=2s+1$ and regularity $r=s$ in a small neighborhood around the edges and vertices, and the degree~$\widetilde{p} \leq p$ with regularity $\widetilde{r} = \widetilde{p}-1 \geq r$ in all other parts of the domain. Our proposed approach relies on the technique Kapl and Vitrih (2021), which requires for the $C^s$-smooth isogeometric spline space a degree at least $p=2s+1$ on the entire multi-patch domain. Similar to Kapl and Vitrih (2021), the $C^s$-smooth mixed degree and regularity spline space is generated as the span of basis functions that correspond to the individual patches, edges and vertices of the domain. The reduction of degrees of freedom for the functions in the interior of the patches is achieved by introducing an appropriate mixed degree and regularity underlying spline space over $[0,1]^2$ to define the functions on the single patches. We further extend our construction with a few examples to the class of bilinear-like $G^8$ multi-patch parameterizations (Kapl and Vitrih (2018); Kapl and Vitrih (2021)), which enables the design of multi-patch domains having curved boundaries and interfaces. Finally, the great potential of the $C^8$-smooth mixed degree and regularity isogeometric spline space for performing isogeometric analysis is demonstrated by several numerical examples of solving two particular high order partial differential equations, namely the biharmonic and triharmonic equation, via the isogeometric Galerkin method.
Ključne besede: isogeometric analysis, Galerkin method, C^s-smoothness, mixed degree and regularity spline space, multi-patch domain
Objavljeno v RUP: 01.07.2025; Ogledov: 108; Prenosov: 3
.pdf Celotno besedilo (3,76 MB)
Gradivo ima več datotek! Več...

2.
3.
4.
5.
Isogeometric analysis with geometrically continuous functions on two-patch geometries
Mario Kapl, Vito Vitrih, Bert Jüttler, Katharina Birner, 2015, izvirni znanstveni članek

Opis: We study the linear space of Cs-smooth isogeometric functions defined on a multi-patch domain % % R2. We show that the construction of these functions is closely related to the concept of geometric continuity of surfaces, which has originated in geometric design. More precisely, the Cs-smoothness of isogeometric functions is found to be equivalent to geometric smoothness of the same order (Gs-smoothness) of their graph surfaces. This motivates us to call them Cs-smooth geometrically continuous isogeometric functions. We present a general framework to construct a basis and explore potential applications in isogeometric analysis. The space of C1-smooth geometrically continuous isogeometric functions on bilinearly parameterized two-patch domains is analyzed in more detail. Numerical experiments with bicubic and biquartic functions for performing L2 approximation and for solving Poisson%s equation and the biharmonic equation on two-patch geometries are presented and indicate optimal rates of convergence.
Ključne besede: izogeometrična analiza, geometrijska zveznost, geometrijsko vzezne izogeometrične funkcije, biharmonična enačba, isogeometric analysis, geometric continuity, geometrically continuous isogeometric functions, biharmonic equation, multi-patch domain
Objavljeno v RUP: 15.10.2015; Ogledov: 5235; Prenosov: 200
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.01 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici