1. Rank-permutable additive mappingsAleksandr Èmilevič Guterman, Anna A. Alieva, Bojan Kuzma, 2006, izvirni znanstveni članek Opis: Let ▫$\sigma$▫ be a fixed non-identical permutation on ▫$k$▫ elements. Additive bijections ▫$T$▫ on the matrix algebra ▫$M_n(\mathbb{F})$▫ over a field ▫$\mathbb{F}$▫ of characteristic zero, with the property that ▫$\rm{rk} (A_1...A_k) = \rm{rk} (A_{\sigma(1)}...A_{\sigma(k)})$▫ implies the same condition on the ▫$T$▫ images, are characterized. It is also shown that the surjectivity assumption can be relaxed, if this property is preserved in both directions. Najdeno v: ključnih besedah Ključne besede: mathematics, linearna algebra, matrix algebra, rank, permutation, additive preservers Objavljeno: 15.10.2013; Ogledov: 2632; Prenosov: 85
Polno besedilo (0,00 KB) |
2. Zhang, Xian; Sze, Nung-Sing: Additive rank-one preservers between spaces of rectangular matrices. (English). - [J] Linear Multilinear Algebra 53, No. 6, 417-425 (2005). [ISSN 0308-1087; ISSN 1563-5139]Bojan Kuzma, 2006, recenzija, prikaz knjige, kritika Najdeno v: ključnih besedah Ključne besede: matematika, linearna algebra, prostor matrik, rank 1, aditivni ohranjevalec Objavljeno: 15.10.2013; Ogledov: 2741; Prenosov: 39
Polno besedilo (0,00 KB) |
3. Additive rank-one nonincreasing maps on Hermitian matrices over the field GF(2[sup]2)Marko Orel, Bojan Kuzma, 2009, izvirni znanstveni članek Opis: A complete classification of additive rank-one nonincreasing maps on hermitian matrices over Galois field ▫$GF(2^2)$▫ is obtained. This field is special and was not covered in a previous paper. As a consequence, some known applications, like the classification of additive rank-additivity preserving maps, are extended to arbitrary fields. An application concerning the preservers of hermitian varieties is also presented. Najdeno v: ključnih besedah Ključne besede: mathematics, linear algebra, additive preserver, hermitian matrices, rank, Galois field, weak homomorphism of a graph Objavljeno: 03.04.2017; Ogledov: 1824; Prenosov: 75
Polno besedilo (0,00 KB) Gradivo ima več datotek! Več...
|
4. |
5. |
6. |