1. On regular graphs with Šoltés verticesNino Bašić, Martin Knor, Riste Škrekovski, 2025, izvirni znanstveni članek Opis: Let ▫$W(G)$▫ be the Wiener index of a graph ▫$G$▫. We say that a vertex ▫$v \in V(G)$▫ is a Šoltés vertex in ▫$G$▫ if ▫$W(G - v) = W(G)$▫, i.e. the Wiener index does not change if the vertex ▫$v$▫ is removed. In 1991, Šoltés posed the problem of identifying all connected graphs ▫$G$▫ with the property that all vertices of ▫$G$▫ are Šoltés vertices. The only such graph known to this day is ▫$C_{11}$▫. As the original problem appears to be too challenging, several relaxations were studied: one may look for graphs with at least ▫$k$▫ Šoltés vertices; or one may look for ▫$\alpha$▫-Šoltés graphs, i.e. graphs where the ratio between the number of Šoltés vertices and the order of the graph is at least ▫$\alpha$▫. Note that the original problem is, in fact, to find all ▫$1$▫-Šoltés graphs. We intuitively believe that every ▫$1$▫-Šoltés graph has to be regular and has to possess a high degree of symmetry. Therefore, we are interested in regular graphs that contain one or more Šoltés vertices. In this paper, we present several partial results. For every ▫$r\ge 1$▫ we describe a construction of an infinite family of cubic ▫$2$▫-connected graphs with at least ▫$2^r$▫ Šoltés vertices. Moreover, we report that a computer search on publicly available collections of vertex-transitive graphs did not reveal any ▫$1$▫-Šoltés graph. We are only able to provide examples of large ▫$\frac{1}{3}$▫-Šoltés graphs that are obtained by truncating certain cubic vertex-transitive graphs. This leads us to believe that no ▫$1$▫-Šoltés graph other than ▫$C_{11}$▫ exists. Ključne besede: Šoltés problem, Wiener index, regular graphs, cubic graphs, Cayley graph, Šoltés vertex Objavljeno v RUP: 10.09.2025; Ogledov: 186; Prenosov: 2
Celotno besedilo (456,75 KB) |
2. |
3. |
4. |
5. On the Terwilliger algebra of bipartite distance-regular graphs with $G_{i-1,i-1,1}(x, y, z) = alpha_i + beta_i G_{1,1,i%1}(x, y, z)$ : 31th Ljubljana - Leoben Graph Theory Seminar, September 3-4, 2018, LoebenSafet Penjić, 2018, prispevek na konferenci brez natisa Ključne besede: distance-regular graphs, Terwilliger algebra, irreducible modules Objavljeno v RUP: 17.09.2018; Ogledov: 2944; Prenosov: 31
Povezava na celotno besedilo |
6. |
7. On the Terwilliger algebra of bipartite distance-regular graphs with [Delta][sub]2 = 0 and c[sub]2=1Mark MacLean, Štefko Miklavič, Safet Penjić, 2016, izvirni znanstveni članek Opis: Let ▫$\Gamma$▫ denote a bipartite distance-regular graph with diameter ▫$D \geq 4$▫ and valency ▫$k \geq 3$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫, and let ▫$A$▫ denote the adjacency matrix of ▫$\Gamma$▫. For ▫$x \in X$▫ and for ▫$0 \leq i \leq D$▫, let ▫$\operatorname{\Gamma}_i(x)$▫ denote the set of vertices in ▫$X$▫ that are distance ▫$i$▫ from vertex ▫$x$▫. Define a parameter ▫$\operatorname{\Delta}_2$▫ in terms of the intersection numbers by ▫$\operatorname{\Delta}_2 = (k - 2)(c_3 - 1) -(c_2 - 1) p_{22}^2$▫. We first show that ▫$\operatorname{\Delta}_2 = 0$▫ implies that ▫$D \leq 5$▫ or ▫$c_2 \in \{1, 2 \}$▫. For ▫$x \in X$▫ let ▫$T = T(x)$▫ denote the subalgebra of ▫$\text{Mat}_X(\mathbb{C})$▫ generated by ▫$A, E_0^\ast, E_1^\ast, \ldots, E_D^\ast$▫, where for ▫$0 \leq i \leq D$, $E_i^\ast$▫ represents the projection onto the▫ $i$▫th subconstituent of ▫$\Gamma$▫ with respect to ▫$x$▫. We refer to ▫$T$▫ as the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. By the endpoint of an irreducible ▫$T$▫-module ▫$W$▫ we mean ▫$\min \{i | E_i^\ast W \ne 0 \}$▫. In this paper we assume ▫$\Gamma$▫ has the property that for ▫$2 \leq i \leq D - 1$▫, there exist complex scalars ▫$\alpha_i$▫, ▫$\beta_i$▫ such that for all ▫$x, y, z \in X$▫ with ▫$\partial(x, y) = 2$▫, ▫$\partial(x, z) = i$▫, ▫$\partial(y, z) = i$▫, we have ▫$\alpha_i + \beta_i | \operatorname{\Gamma}_1(x) \cap \operatorname{\Gamma}_1(y) \cap \operatorname{\Gamma}_{i - 1}(z) | = | \operatorname{\Gamma}_{i - 1}(x) \cap \operatorname{\Gamma}_{i - 1}(y) \cap \operatorname{\Gamma}_1(z) |$▫. We additionally assume that▫ $\operatorname{\Delta}_2 = 0$▫ with ▫$c_2 = 1$▫. Under the above assumptions we study the algebra ▫$T$▫. We show that if ▫$\Gamma$▫ is not almost 2-homogeneous, then up to isomorphism there exists exactly one irreducible ▫$T$▫-module with endpoint 2. We give an orthogonal basis for this ▫$T$▫-module, and we give the action of ▫$A$▫ on this basis. Ključne besede: distance-regular graphs, terwilliger algebra, subconstituent algebra Objavljeno v RUP: 14.11.2017; Ogledov: 3760; Prenosov: 149
Povezava na celotno besedilo |
8. A note on the spectral characterization of dumbbell graphsJianFeng Wang, Qiongxiang Huang, Francesco Belardo, Enzo M. Li Marzi, 2009, izvirni znanstveni članek Ključne besede: grafi, spektri, skoraj regularni grafi, graphs, specters, almost regular graphs Objavljeno v RUP: 15.10.2015; Ogledov: 5796; Prenosov: 225
Povezava na celotno besedilo |
9. On bipartite Q-polynominal distance-regular graphsŠtefko Miklavič, 2007, izvirni znanstveni članek Opis: Let ▫$\Gamma$▫ denote a bipartite ▫$Q$▫-polynomial distance-regular graph with vertex set ▫$X$▫, diameter ▫$d \ge 3$▫ and valency ▫$k \ge 3$▫. Let ▫${\mathbb{R}}^X$▫ denote the vector space over ▫$\mathbb{R}$▫ consisting of column vectors with entries in ▫$\mathbb{r}$▫ and rows indexed by ▫$X$▫. For ▫$z \in X$▫, let ▫$\hat{z}$▫ denote the vector in ▫${\mathbb{R}}^X$▫ with a 1 in the ▫$z$▫-coordinate, and 0 in all other coordinates. Fix ▫$x,y \in X$▫ such that ▫$\partial(x,y)=2▫, where ▫$\partial$▫ denotes the path-length distance. For ▫$0 \le i,j \le d$▫ define ▫$w_{ij} = \sum\hat{z}$▫, where the sum is over all ▫$z \in X$▫ such that ▫$\partial(x,z) = i$▫ and ▫$\partial(y,z) = j▫$. We define ▫$W = \textrm{span} \{w_{ij}|0 \le i,j \le d\}$▫. In this paper we consider the space ▫$MW = \textrm{span} \{mw |m \in M, w \in W \l\}$▫, where ▫$M$▫ is the Bose-Mesner algebra of ▫$\Gamma$▫. We observe that ▫$MW$▫ is the minimal ▫$A$▫-invariant subspace of ▫${\mathbb{R}}^X$▫ which contains ▫$W$▫, where ▫$A$▫ is the adjacency matrix of ▫$\Gamma$▫. We display a basis for ▫$MW$▫ that is orthogonal with respect to the dot product. We give the action of ▫$A$▫ on this basis. We show that the dimension of ▫$MW$▫ is ▫$3d-3$▫ if ▫$\Gamma$▫ is 2-homogeneous, ▫$3d-1$▫ if ▫$\Gamma$▫ is the antipodal quotient of the ▫$2d$▫-cube, and ▫$4d-4$▫ otherwise. We obtain our main result using Terwilliger's "balanced set" characterization of the ▫$Q$▫-polynomial property. Ključne besede: mathematics, graph theory, distance-regular graphs, ▫$Q$▫-polynominal property, Bose-Mesner algebra, balanced set characterization of the Q-polynominal property Objavljeno v RUP: 15.10.2013; Ogledov: 6734; Prenosov: 32
Povezava na celotno besedilo |
10. On 2-fold covers of graphsYan-Quan Feng, Klavdija Kutnar, Aleksander Malnič, Dragan Marušič, 2008, izvirni znanstveni članek Opis: A regular covering projection ▫$\wp : \widetilde{X} \to X$▫ of connected graphs is ▫$G$▫-admissible if ▫$G$▫ lifts along ▫$\wp$▫. Denote by ▫$\tilde{G}$▫ the lifted group, and let CT▫$(\wp)$▫ be the group of covering transformations. The projection is called ▫$G$▫-split whenever the extension ▫{$\mathrm{CT}}(\wp) \to \tilde{G} \to G$▫ splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that ▫$G$▫ is transitive on ▫$X$▫, a ▫$G$▫-split cover is said to be ▫$G$▫-split-transitive if all complements ▫$\tilde{G} \cong G$▫ of CT▫$(\wp)$▫ within ▫$\tilde{G}$▫ are transitive on ▫$\widetilde{X}$▫; it is said to be ▫$G$▫-split-sectional whenever for each complement ▫$\tilde{G}$▫ there exists a ▫$\tilde{G}$▫-invariant section of ▫$\wp$▫; and it is called ▫$G$▫-split-mixed otherwise. It is shown, when ▫$G$▫ is an arc-transitive group, split-sectional and split-mixed 2-covers lead to canonical double covers. Split-transitive covers, however, are considerably more difficult to analyze. For cubic symmetric graphs split 2-cover are necessarily canonical double covers (that is, no ▫$G$▫-split-transitive 2-covers exist) when ▫$G$▫ is 1-regular or 4-regular. In all other cases, that is, if ▫$G$▫ is ▫$s$▫-regular, ▫$s=2,3$▫ or ▫$5$▫, a necessary and sufficient condition for the existence of a transitive complement ▫$\tilde{G}$▫ is given, and moreover, an infinite family of split-transitive 2-covers based on the alternating groups of the form ▫$A_{12k+10}$▫ is constructed. Finally, chains of consecutive 2-covers, along which an arc-transitive group ▫$G$▫ has successive lifts, are also considered. It is proved that in such a chain, at most two projections can be split. Further, it is shown that, in the context of cubic symmetric graphs, if exactly two of them are split, then one is split-transitive and the other one is either split-sectional or split-mixed. Ključne besede: graph theory, graphs, cubic graphs, symmetric graphs, ▫$s$▫-regular group, regular covering projection Objavljeno v RUP: 15.10.2013; Ogledov: 5630; Prenosov: 41
Povezava na celotno besedilo |