1. Odd extensions of transitive groups via symmetric graphs - The cubic caseKlavdija Kutnar, Dragan Marušič, 2018, izvirni znanstveni članek Opis: When dealing with symmetry properties of mathematical objects, one of the fundamental questions is to determine their full automorphism group. In this paper this question is considered in the context of even/odd permutations dichotomy. More precisely: when is it that the existence of automorphisms acting as even permutations on the vertex set of a graph, called even automorphisms, forces the existence of automorphisms that act as odd permutations, called odd automorphisms. As a first step towards resolving the above question, complete information on the existence of odd automorphisms in cubic symmetric graphs is given. Ključne besede: automorphism group, arc-transitive, even permutation, odd permutation, cubic symmetric graph Objavljeno v RUP: 18.11.2018; Ogledov: 2404; Prenosov: 200 Povezava na celotno besedilo |
2. Odd automorphisms in vertex-transitive graphsAdemir Hujdurović, Klavdija Kutnar, Dragan Marušič, 2016, izvirni znanstveni članek Opis: An automorphism of a graph is said to be even/odd if it acts on the set of vertices as an even/odd permutation. In this article we pose the problem of determining which vertex-transitive graphs admit odd automorphisms. Partial results for certain classes of vertex-transitive graphs, in particular for Cayley graphs, are given. As a consequence, a characterization of arc-transitive circulants without odd automorphisms is obtained. Ključne besede: graph, vertex-transitive, automorphism group, even permutation, odd permutation Objavljeno v RUP: 15.11.2017; Ogledov: 2587; Prenosov: 102 Celotno besedilo (281,25 KB) |
3. |
4. Minimal normal subgroups of transitive permutation groups of square-free degreeEdward Dobson, Aleksander Malnič, Dragan Marušič, Lewis A. Nowitz, 2007, izvirni znanstveni članek Opis: It is shown that a minimal normal subgroup of a transitive permutation group of square-free degree in its induced action is simple and quasiprimitive, with three exceptions related to ▫$A_5$▫, ▫$A_7$▫, and PSL(2,29). Moreover, it is shown that a minimal normal subgroup of a 2-closed permutation group of square-free degree in its induced action is simple. As an almost immediate consequence, it follows that a 2-closed transitive permutation group of square-free degree contains a semiregular element of prime order, thus giving a partial affirmative answer to the conjecture that all 2-closed transitive permutation groups contain such an element (see [D. Marušic, On vertex symmetric digraphs,Discrete Math. 36 (1981) 69-81; P.J. Cameron (Ed.), Problems from the fifteenth British combinatorial conference, Discrete Math. 167/168 (1997) 605-615]). Ključne besede: mathematics, graph theory, transitive permutation group, 2-closed group, square-free degree, semiregular automorphism, vertex-transitive graph Objavljeno v RUP: 02.04.2017; Ogledov: 2637; Prenosov: 93 Povezava na celotno besedilo |
5. Semiregular automorphisms of vertex-transitive graphs of certain valenciesEdward Dobson, Aleksander Malnič, Dragan Marušič, Lewis A. Nowitz, 2007, izvirni znanstveni članek Opis: It is shown that a vertex-transitive graph of valency ▫$p+1$▫, ▫$p$▫ a prime, admitting a transitive action of a ▫$\{2,p\}$▫-group, has a non-identity semiregular automorphism. As a consequence, it is proved that a quartic vertex-transitive graph has a non-identity semiregular automorphism, thus giving a partial affirmative answer to the conjecture that all vertex-transitive graphs have such an automorphism and, more generally, that all 2-closed transitive permutation groups contain such an element (see [D. Marušic, On vertex symmetric digraphs, Discrete Math. 36 (1981) 69-81; P.J. Cameron (Ed.), Problems from the Fifteenth British Combinatorial Conference, Discrete Math. 167/168 (1997) 605-615]). Ključne besede: mathematics, graph theory, transitive permutation group, 2-closed group, semiregular automorphism, vertex-transitive graph Objavljeno v RUP: 02.04.2017; Ogledov: 2765; Prenosov: 88 Povezava na celotno besedilo |
6. |
7. Classification of 2-arc-transitive dihedrantsShao Fei Du, Aleksander Malnič, Dragan Marušič, 2008, izvirni znanstveni članek Opis: A complete classification of 2-arc-transitive dihedrants, that is, Cayley graphs of dihedral groups is given, thus completing the study of these graphs initiated by the third author in [D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin. Theory Ser. B 87 (2003) 162-196]. The list consists of the following graphs: (i) cycles ▫$C_{2n},\; n \ge 3$▫; (ii) complete graphs ▫$K_{2n}, \; n \ge 3$▫; (iii) complete bipartite graphs ▫$K_{n,n}, \; n \ge 3$▫; (iv) complete bipartite graphs minus a matching ▫$K_{n,n} - nK_2, \; n \ge 3$▫; (v) incidence and nonincidence graphs ▫$B(H_{11})$▫ and ▫$B'(H_{11})$▫ of the Hadamard design on 11 points; (vi) incidence and nonincidence graphs ▫$B(PG(d,q))$▫ and ▫$B'(PG(d,q))$▫, with ▫$d \ge 2$▫ and ▫$q$▫ a prime power, of projective spaces; (vii) and an infinite family of regular ▫${\mathbb{Z}}_d$▫-covers ▫$K_{q+1}^{2d}$▫ of ▫$K_{q+1, q+1} - (q+1)K_2$▫, where ▫$q \ge 3$▫ is an odd prime power and ▫$d$▫ is a divisor of ▫$\frac{q-1}{2}$▫ and ▫$q-1$▫, respectively, depending on whether ▫$q \equiv 1 \pmod{4}$▫ or ▫$q \equiv 3 \pmod{4}$▫ obtained by identifying the vertex set of the base graph with two copies of the projective line ▫$PG(1,q)$▫, where the missing matching consists of all pairs of the form ▫$[i,i']$▫, ▫$i \in PG(1,q)$▫, and the edge ▫$[i,j']$▫ carries trivial voltage if ▫$i=\infty$▫ or ▫$j=\infty$▫, and carries voltage ▫$\bar{h} \in {\mathbb{Z}}_d$▫, the residue class of ▫$h \in {\mathbb{Z}}_d$▫, if and only if ▫$i-j = \theta^h$▫, where ▫$\theta$▫ generates the multiplicative group ▫${\mathbb{F}}_q^\ast$▫ of the Galois field ▫${\mathbb{F}}_q$▫. Ključne besede: permutation group, imprimitive group, dihedral group, Cayley graph, dihedrant, 2-Arc-transitive graph Objavljeno v RUP: 15.10.2013; Ogledov: 3804; Prenosov: 91 Povezava na celotno besedilo |