3.
Rose window graphs underlying rotary mapsIstván Kovács,
Klavdija Kutnar,
János Ruff, 2010, objavljeni znanstveni prispevek na konferenci
Opis: Given natural numbers ▫$n \ge 3$▫ and ▫$1 \le a$▫, ▫$r \le n-1$▫, the rose window graph ▫$R_n(a,r)$▫ is a quartic graph with vertex set ▫$\{x_i \vert\; i \in {\mathbb Z}_n \} \cup \{y_i \vert\; i \in {\mathbb Z}_n \}$▫ and edge set ▫$\{\{x_i, x_{i+1}\} \vert\; i \in {\mathbb Z}_n \} \cup \{\{y_i, y_{i+1}\} \vert\; i \in {\mathbb Z}_n \} \cup \{\{x_i, y_i\} \vert\; i \in {\mathbb Z}_n\} \cup \{\{x_{i+a}, y_i\} \vert\; i \in {\mathbb Z}_n \}$▫. In this paper rotary maps on rose window graphs are considered. In particular, we answer the question posed in [S. Wilson, Rose window graphs, Ars Math. Contemp. 1 (2008), 7-19. http://amc.imfm.si/index.php/amc/issue/view/5] concerning which of these graphs underlie a rotary map.
Ključne besede: graph theory, rotary map, edge-transitive graph, covering graph, voltage graph
Objavljeno v RUP: 15.10.2013; Ogledov: 3952; Prenosov: 88
Povezava na celotno besedilo