Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
3.
Isogeometric analysis with geometrically continuous functions on two-patch geometries
Mario Kapl, Vito Vitrih, Bert Jüttler, Katharina Birner, 2015, izvirni znanstveni članek

Opis: We study the linear space of Cs-smooth isogeometric functions defined on a multi-patch domain % % R2. We show that the construction of these functions is closely related to the concept of geometric continuity of surfaces, which has originated in geometric design. More precisely, the Cs-smoothness of isogeometric functions is found to be equivalent to geometric smoothness of the same order (Gs-smoothness) of their graph surfaces. This motivates us to call them Cs-smooth geometrically continuous isogeometric functions. We present a general framework to construct a basis and explore potential applications in isogeometric analysis. The space of C1-smooth geometrically continuous isogeometric functions on bilinearly parameterized two-patch domains is analyzed in more detail. Numerical experiments with bicubic and biquartic functions for performing L2 approximation and for solving Poisson%s equation and the biharmonic equation on two-patch geometries are presented and indicate optimal rates of convergence.
Ključne besede: izogeometrična analiza, geometrijska zveznost, geometrijsko vzezne izogeometrične funkcije, biharmonična enačba, isogeometric analysis, geometric continuity, geometrically continuous isogeometric functions, biharmonic equation, multi-patch domain
Objavljeno v RUP: 14.10.2015; Ogledov: 4231; Prenosov: 197
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.01 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici