Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
An overview of training methods that promote the highest lipid oxidation during and after a single exercise session
Boštjan Šimunič, Barbara Purkart, Mitja Gerževič, 2015, pregledni znanstveni članek

Najdeno v: ključnih besedah
Povzetek najdenega: ...endurance exercise, interval exercise, training, nutrition, fatty acid, triacylglycerol, ...
Ključne besede: endurance exercise, interval exercise, training, nutrition, fatty acid, triacylglycerol
Objavljeno: 09.08.2016; Ogledov: 2434; Prenosov: 39
URL Polno besedilo (0,00 KB)

2.
Vpliv prehrane na nivo krvnega sladkorja med telesno aktivnostjo pri bolnikih s sladkorno boleznijo tipa 1
Nastja Eler, 2017, diplomsko delo

Najdeno v: ključnih besedah
Povzetek najdenega: ...prehrana, telesna aktivnost, šport, diabetes type 1, nutrition, physical activity, sport...
Ključne besede: sladkorna bolezen tip 1, prehrana, telesna aktivnost, šport, diabetes type 1, nutrition, physical activity, sport
Objavljeno: 08.06.2018; Ogledov: 1629; Prenosov: 0

3.
Obesity measures and dietary parameters as predictors of gut microbiota phyla in healthy individuals
Marcos Ascensión, Noemi Redondo, Esther Nova, Zala Jenko Pražnikar, Jure Pražnikar, Ana Petelin, Katja Bezek, 2020, izvirni znanstveni članek

Opis: : The dynamics and diversity of human gut microbiota that can remarkably influence the wellbeing and health of the host are constantly changing through the host%s lifetime in response to various factors. The aim of the present study was to determine a set of parameters that could have a major impact on classifying subjects into a single cluster regarding gut bacteria composition. Therefore, a set of demographical, environmental, and clinical data of healthy adults aged 25%50 years (117 female and 83 men) was collected. Fecal microbiota composition was characterized using Illumina MiSeq 16S rRNA gene amplicon sequencing. Hierarchical clustering was performed to analyze the microbiota data set, and a supervised machine learning model (SVM; Support Vector Machines) was applied for classification. Seventy variables from collected data were included in machine learning analysis. The agglomerative clustering algorithm suggested the presence of four distinct community types of most abundant bacterial phyla. Each cluster harbored a statistically significant different proportion of bacterial phyla. Regarding prediction, the most important features classifying subjects into clusters were measures of obesity (waist to hip ratio, BMI, and visceral fat index), total body water, blood pressure, energy intake, total fat, olive oil intake, total fiber intake, and water intake. In conclusion, the SVM model was shown as a valuable tool to classify healthy individuals based on their gut microbiota composition.
Najdeno v: ključnih besedah
Povzetek najdenega: ...gut microbiota, nutrition, obesity, lifestyle parameters, clustering...
Ključne besede: gut microbiota, nutrition, obesity, lifestyle parameters, clustering
Objavljeno: 10.09.2020; Ogledov: 585; Prenosov: 50
URL Polno besedilo (0,00 KB)

Iskanje izvedeno v 0 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici