1. |
2. |
3. |
4. |
5. |
6. Quasi-semiregular automorphisms of cubic and tetravalent arc-transitive graphs : Group Action and Combinatorial Structures, Nankai University, Tianjin, China, 15. - 18. 6. 2018István Kovács, Yan-Quan Feng, Ademir Hujdurović, Klavdija Kutnar, Dragan Marušič, 2018, prispevek na konferenci brez natisa Ključne besede: quasi-semiregular automorphism, cubic graph, tetravalent graph, arc-transitive graph Objavljeno v RUP: 06.12.2018; Ogledov: 2410; Prenosov: 135 Povezava na celotno besedilo |
7. |
8. On 2-fold covers of graphsYan-Quan Feng, Klavdija Kutnar, Aleksander Malnič, Dragan Marušič, 2008, izvirni znanstveni članek Opis: A regular covering projection ▫$\wp : \widetilde{X} \to X$▫ of connected graphs is ▫$G$▫-admissible if ▫$G$▫ lifts along ▫$\wp$▫. Denote by ▫$\tilde{G}$▫ the lifted group, and let CT▫$(\wp)$▫ be the group of covering transformations. The projection is called ▫$G$▫-split whenever the extension ▫{$\mathrm{CT}}(\wp) \to \tilde{G} \to G$▫ splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that ▫$G$▫ is transitive on ▫$X$▫, a ▫$G$▫-split cover is said to be ▫$G$▫-split-transitive if all complements ▫$\tilde{G} \cong G$▫ of CT▫$(\wp)$▫ within ▫$\tilde{G}$▫ are transitive on ▫$\widetilde{X}$▫; it is said to be ▫$G$▫-split-sectional whenever for each complement ▫$\tilde{G}$▫ there exists a ▫$\tilde{G}$▫-invariant section of ▫$\wp$▫; and it is called ▫$G$▫-split-mixed otherwise. It is shown, when ▫$G$▫ is an arc-transitive group, split-sectional and split-mixed 2-covers lead to canonical double covers. Split-transitive covers, however, are considerably more difficult to analyze. For cubic symmetric graphs split 2-cover are necessarily canonical double covers (that is, no ▫$G$▫-split-transitive 2-covers exist) when ▫$G$▫ is 1-regular or 4-regular. In all other cases, that is, if ▫$G$▫ is ▫$s$▫-regular, ▫$s=2,3$▫ or ▫$5$▫, a necessary and sufficient condition for the existence of a transitive complement ▫$\tilde{G}$▫ is given, and moreover, an infinite family of split-transitive 2-covers based on the alternating groups of the form ▫$A_{12k+10}$▫ is constructed. Finally, chains of consecutive 2-covers, along which an arc-transitive group ▫$G$▫ has successive lifts, are also considered. It is proved that in such a chain, at most two projections can be split. Further, it is shown that, in the context of cubic symmetric graphs, if exactly two of them are split, then one is split-transitive and the other one is either split-sectional or split-mixed. Ključne besede: graph theory, graphs, cubic graphs, symmetric graphs, ▫$s$▫-regular group, regular covering projection Objavljeno v RUP: 15.10.2013; Ogledov: 4260; Prenosov: 35 Povezava na celotno besedilo |