Naslov: | Identities with generalized skew derivations on Lie ideals |
---|
Avtorji: | ID De Filippis, Vincenzo (Avtor) ID Fošner, Ajda (Avtor) ID Wei, Feng (Avtor) |
Datoteke: | http://dx.doi.org/10.1007/s10468-012-9344-4
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IAM - Inštitut Andrej Marušič
|
---|
Opis: | Let ▫$m, n$▫ be two nonzero fixed positive integers, ▫$R$▫ a 2-torsion free prime ring with the right Martindale quotient ring ▫$Q$▫, ▫$L$▫ a non-central Lie ideal of ▫$R$▫, and ▫$\delta$▫ a derivation of ▫$R$▫. Suppose that ▫$\alpha$▫ is an automorphism of ▫$R$▫, ▫$D$▫ a skew derivation of ▫$R$▫ with the associated automorphism ▫$\alpha$▫, and ▫$F$▫ a generalized skew derivation of ▫$R$▫ with the associated skew derivation ▫$D$▫. If ▫$$F(x^{m+n}) = F(x^m)x^n + x^m \delta (x^n)$$▫ is a polynomial identity for ▫$L$▫, then either ▫$R$▫ satisfies the standard polynomial identity ▫$s_4(x_1, x_2, x_3, x_4)$▫ of degree 4, or ▫$F$▫ is a generalized derivation of ▫$R$▫ and ▫$\delta = D$▫. Furthermore, in the latter case one of the following statements holds: (1) ▫$D = \delta = 0$▫ and there exists ▫$a \in Q$▫ such that ▫$F(x) = ax$▫ for all ▫$x \in R$▫; (2) ▫$\alpha$▫ is the identical mapping of ▫$R$▫. |
---|
Ključne besede: | mathematics, algebra, polynomial identity, generalized skew derivation, prime ring |
---|
Leto izida: | 2013 |
---|
Št. strani: | str. 1017-1038 |
---|
Številčenje: | Vol. 16, issue 4 |
---|
PID: | 20.500.12556/RUP-1000 |
---|
ISSN: | 1386-923X |
---|
UDK: | 512.552 |
---|
COBISS.SI-ID: | 16653657 |
---|
Datum objave v RUP: | 15.10.2013 |
---|
Število ogledov: | 4951 |
---|
Število prenosov: | 145 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |