Naslov: | A complete classification of cubic symmetric graphs of girth 6 |
---|
Avtorji: | ID Kutnar, Klavdija (Avtor) ID Marušič, Dragan (Avtor) |
Datoteke: | http://dx.doi.org/10.1016/j.jctb.2008.06.001
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | UPR - Univerza na Primorskem
|
---|
Opis: | A complete classification of cubic symmetric graphs of girth 6 is given. It is shown that with the exception of the Heawood graph, the Moebius-Kantor graph, the Pappus graph, and the Desargues graph, a cubic symmetric graph ▫$X$▫ of girth 6 is a normal Cayley graph of a generalized dihedral group; in particular, (i) ▫$X$▫ is 2-regular if and only if it is isomorphic to a so-called ▫$I_k^n$▫-path, a graph of order either ▫$n^2/2$▫ or ▫$n^2/6$▫, which is characterized by the fact that its quotient relative to a certain semiregular automorphism is a path. (ii) ▫$X$▫ is 1-regular if and only if there exists an integer ▫$r$▫ with prime decomposition ▫$r=3^s p_1^{e_1} \dots p_t^{e_t} > 3$▫, where ▫$s \in \{0,1\}$▫, ▫$t \ge 1$▫, and ▫$p_i \equiv 1 \pmod{3}$▫, such that ▫$X$▫ is isomorphic either to a Cayley graph of a dihedral group ▫$D_{2r}$▫ of order ▫$2r$▫ or ▫$X$▫ is isomorphic to a certain ▫$\ZZ_r$▫-cover of one of the following graphs: the cube ▫$Q_3$▫, the Pappus graph or an ▫$I_k^n(t)$▫-path of order ▫$n^2/2$▫. |
---|
Ključne besede: | graph theory, cubic graphs, symmetric graphs, ▫$s$▫-regular graphs, girth, consistent cycle |
---|
Leto izida: | 2009 |
---|
Št. strani: | str. 162-184 |
---|
Številčenje: | Vol. 99, No. 1 |
---|
PID: | 20.500.12556/RUP-1125 |
---|
ISSN: | 0095-8956 |
---|
UDK: | 519.17 |
---|
COBISS.SI-ID: | 2724823 |
---|
Datum objave v RUP: | 15.10.2013 |
---|
Število ogledov: | 4537 |
---|
Število prenosov: | 87 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |