Title: | Rose window graphs underlying rotary maps |
---|
Authors: | ID Kovács, István (Author) ID Kutnar, Klavdija (Author) ID Ruff, János (Author) |
Files: | http://dx.doi.org/10.1016/j.disc.2009.12.010
|
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.08 - Published Scientific Conference Contribution |
---|
Organization: | IAM - Andrej Marušič Institute
|
---|
Abstract: | Given natural numbers ▫$n \ge 3$▫ and ▫$1 \le a$▫, ▫$r \le n-1$▫, the rose window graph ▫$R_n(a,r)$▫ is a quartic graph with vertex set ▫$\{x_i \vert\; i \in {\mathbb Z}_n \} \cup \{y_i \vert\; i \in {\mathbb Z}_n \}$▫ and edge set ▫$\{\{x_i, x_{i+1}\} \vert\; i \in {\mathbb Z}_n \} \cup \{\{y_i, y_{i+1}\} \vert\; i \in {\mathbb Z}_n \} \cup \{\{x_i, y_i\} \vert\; i \in {\mathbb Z}_n\} \cup \{\{x_{i+a}, y_i\} \vert\; i \in {\mathbb Z}_n \}$▫. In this paper rotary maps on rose window graphs are considered. In particular, we answer the question posed in [S. Wilson, Rose window graphs, Ars Math. Contemp. 1 (2008), 7-19. http://amc.imfm.si/index.php/amc/issue/view/5] concerning which of these graphs underlie a rotary map. |
---|
Keywords: | graph theory, rotary map, edge-transitive graph, covering graph, voltage graph |
---|
Year of publishing: | 2010 |
---|
Number of pages: | str. 1802-1811 |
---|
Numbering: | Vol. 310, no. 12 |
---|
PID: | 20.500.12556/RUP-1173 |
---|
ISSN: | 0012-365X |
---|
UDC: | 519.17 |
---|
COBISS.SI-ID: | 1024195924 |
---|
Publication date in RUP: | 15.10.2013 |
---|
Views: | 4072 |
---|
Downloads: | 89 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |