Title: | Leonard triples and hypercubes |
---|
Authors: | ID Miklavič, Štefko (Author) |
Files: | http://dx.doi.org/10.1007/s10801-007-0108-x
|
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IAM - Andrej Marušič Institute
|
---|
Abstract: | Let ▫$V$▫ denote a vector space over ▫$\mathbb{C}$▫ with finite positive dimension. By a Leonard triple on ▫$V$▫ we mean an ordered triple of linear operators on ▫$V$▫ such that for each of these operators there exists a basis of ▫$V$▫ with respect to which the matrix representing that operator is diagonal and the matrices representing the other two operators are irreducible tridiagonal. Let ▫$D$▫ denote a positive integer and let ▫${\mathcal{Q}}_D$▫ denote the graph of the ▫$D$▫-dimensional hypercube. Let ▫$X$ denote the vertex set of ▫${\mathcal{Q}}_D$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫${\mathcal{Q}}_D$▫. Fix ▫$x \in X$▫ and let ▫$A^\ast \in {\mathrm{Mat}}_X({\mathbb{C}})$▫ denote the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫${\mathrm{Mat}}_X({\mathbb{C}})$ generated by ▫$A,A^\ast$▫. We refer to ▫$T$▫ as the Terwilliger algebra of ▫${\mathcal{Q}}_D$▫ with respect to ▫$x$▫. The matrices ▫$A$▫ and ▫$A^\ast$▫ are related by the fact that ▫$2iA = A^\ast A^\varepsilon - A^\varepsilon A^\ast$▫ and ▫$2iA^\ast = A^\varepsilon A - AA^\varepsilon$▫, where ▫$2iA^\varepsilon = AA^\ast - A^\ast A$▫ and ▫$i^2 = -1$▫. We show that the triple ▫$A$▫, ▫$A^\ast$▫, ▫$A^\varepsilon$▫ acts on each irreducible ▫$T$▫-module as a Leonard triple. We give a detailed description of these Leonard triples. |
---|
Keywords: | mathematics, graph theory, Leonard triple, distance-regular graph, hypercube, Terwilliger algebra |
---|
Year of publishing: | 2007 |
---|
Number of pages: | str. 397-424 |
---|
Numbering: | Vol. 28, no. 3 |
---|
PID: | 20.500.12556/RUP-1597 |
---|
ISSN: | 0925-9899 |
---|
UDC: | 519.17 |
---|
COBISS.SI-ID: | 14624857 |
---|
Publication date in RUP: | 15.10.2013 |
---|
Views: | 4967 |
---|
Downloads: | 123 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |