Title: | On generalized Jordan triple ([alpha], [beta]) [sup] [ast]-derivations and related mappings |
---|
Authors: | ID Ali, Shakir (Author) ID Fošner, Ajda (Author) ID Fošner, Maja (Author) ID Khan, Mohammad Salahuddin (Author) |
Files: | http://dx.doi.org/10.1007/s00009-013-0277-x
|
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IAM - Andrej Marušič Institute
|
---|
Abstract: | Let ▫$R$▫ be a 2-torsion free semiprime ▫$\ast$▫-ring and let ▫$\alpha, \beta$▫ be surjective endomorphisms of ▫$R$▫. The aim of the paper is to show that every generalized Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation on ▫$R$▫ is a generalized Jordan ▫$(\alpha, \beta)^\ast$▫-derivation. This result makes it possible to prove that every generalized Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation on a semisimple ▫$H^\ast$▫-algebra is a generalized Jordan ▫$(\alpha, \beta)^\ast$▫-derivation. Finally, we prove that every Jordan triple left ▫$\alpha^\ast$▫-centralizer on a 2-torsion free semiprime ring is a Jordan left ▫$\alpha^\ast$▫-centralizer. |
---|
Keywords: | mathematics, algebra, semiprime ▫$\ast$▫-ring, ▫$H^\ast$▫-algebra, Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation, generalized Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation, Jordan triple left ▫$\alpha^\ast$▫-centralizer |
---|
Year of publishing: | 2013 |
---|
Number of pages: | 13 str. |
---|
PID: | 20.500.12556/RUP-1697 |
---|
ISSN: | 1660-5446 |
---|
UDC: | 512.552 |
---|
COBISS.SI-ID: | 16660825 |
---|
Publication date in RUP: | 15.10.2013 |
---|
Views: | 5138 |
---|
Downloads: | 79 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |