Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali uporabite sodobnejši brskalnik.
ENG
Prijava
Iskanje
Brskanje
Oddaja dela
Statistika
RUP
FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
FHŠ - Fakulteta za humanistične študije
FM - Fakulteta za management
FTŠ Turistica - Fakulteta za turistične študije - Turistica
FVZ - Fakulteta za vede o zdravju
IAM - Inštitut Andrej Marušič
PEF - Pedagoška fakulteta
UPR - Univerza na Primorskem
ZUP - Založba Univerze na Primorskem
COBISS
Univerza na Primorskem, Univerzitetna knjižnica - vsi oddelki
Prva stran
/
Izpis gradiva
Izpis gradiva
A-
|
A+
|
Natisni
Naslov:
The Terwilliger algebra of a distance-regular graph of negative type
Avtorji:
ID
Miklavič, Štefko
(Avtor)
Datoteke:
http://dx.doi.org/10.1016/j.laa.2008.07.013
Jezik:
Angleški jezik
Vrsta gradiva:
Delo ni kategorizirano
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
IAM - Inštitut Andrej Marušič
Opis:
Let ▫$\Gamma$▫ denote a distance-regular graph with diameter ▫$D \ge 3$▫. Assume ▫$\Gamma$▫ has classical parameters ▫$(D,b,\alpha,\beta)▫$ with ▫$b < -1$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X(\mathbb{C})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let $A^\ast \in {\mathrm{Mat}}_X(\mathbb{C})$ denote the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ${\mathrm{Mat}}_X(\mathbb{C})$ generated by ▫$A,A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exist exactly two irreducible ▫$T$▫-modules with endpoint 1; their dimensions are ▫$D$▫ and ▫$2D-2$▫. For these ▫$T$▫-modules we display a basis consisting of eigenvectors for ▫$A^\ast$▫, and for each basis we give the action of ▫$A$▫.
Ključne besede:
distance-regular graph
,
negative type
,
Terwilliger algebra
Leto izida:
2009
Št. strani:
str. 251-270
Številčenje:
Vol. 430, no. 1
PID:
20.500.12556/RUP-172
ISSN:
0024-3795
UDK:
519.1
COBISS.SI-ID:
2132965
Datum objave v RUP:
15.10.2013
Število ogledov:
3740
Število prenosov:
110
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Skupna ocena:
(0 glasov)
Vaša ocena:
Ocenjevanje je dovoljeno samo
prijavljenim
uporabnikom.
Objavi na:
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.
Komentarji
Dodaj komentar
Za komentiranje se morate
prijaviti
.
Komentarji (0)
0 - 0 / 0
Ni komentarjev!
Nazaj