Lupa

Show document Help

A- | A+ | Print
Title:Divergence zero quaternionic vector fields and Hamming graphs
Authors:ID Prezelj, Jasna (Author)
ID Vlacci, Fabio (Author)
Files:.pdf RAZ_Prezelj-Perman_Jasna_i2020.pdf (354,73 KB)
MD5: 711CADE5BBBFAC5D2505F9D7D270E791
 
Language:English
Work type:Unknown
Typology:1.01 - Original Scientific Article
Organization:ZUP - University of Primorska Press
Abstract:We give a possible extension of the definition of quaternionic power series, partial derivatives and vector fields in the case of two (and then several) non commutative (quaternionic) variables. In this setting we also investigate the problem of describing zero functions which are not null functions in the formal sense. A connection between an analytic condition and a graph theoretic property of a subgraph of a Hamming graph is shown, namely the condition that polynomial vector field has formal divergence zero is equivalent to connectedness of subgraphs of Hamming graphs ▫$H(d, 2)$▫. We prove that monomials in variables ▫$z$▫ and ▫$w$▫ are always linearly independent as functions only in bidegrees ▫$(p, 0)$▫, ▫$(p, 1)$▫, ▫$(0, q)$▫, ▫$(1, q)$▫ and ▫$(2, 2)$▫.
Keywords:quaternionic power series, bidegree full functions, Hamming graph, linearly independent quaternionic monomials
Year of publishing:2020
Number of pages:str. 189-208
Numbering:Vol. 19, no. 2
PID:20.500.12556/RUP-17637 This link opens in a new window
UDC:517.5:519.17
ISSN on article:1855-3966
DOI:10.26493/1855-3974.2033.974 This link opens in a new window
COBISS.SI-ID:42362883 This link opens in a new window
Publication date in RUP:03.01.2022
Views:1322
Downloads:17
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Ars mathematica contemporanea
Publisher:Društvo matematikov, fizikov in astronomov, Društvo matematikov, fizikov in astronomov, Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
ISSN:1855-3966
COBISS.SI-ID:239049984 This link opens in a new window

Secondary language

Language:Slovenian
Title:Vektorska polja z divergenco nič in Hammingovi grafi
Abstract:V članku je predlagana možna razširitev definicije kvaternionskih potenčnih vrst, parcialnih odvodov in vektorskih polj za dve oz. več nekomutativnih (kvaternionskih) spremenljivk. Obravnavan je problem ničelnih funkcij, ki jih popisujejo vrste, ki niso formalno ničelne. Podana je povezava med analitičnim pogojem in pogojem na podgraf Hammingovega grafa. Natančneje, polinomsko vektorsko polje ima formalno divergenco nič natanko tedaj, ko je določen podgraf Hammingovega grafa ▫$H(d, 2)$▫ povezan. Dokazano je, da so monomi v spremenljivkah ▫$z$▫ in ▫$w$▫ vedno linearno neodvisni kot funkcije samo v bistopnjah ▫$(p, 0)$▫, ▫$(p, 1)$▫, ▫$(0, q)$▫, ▫$(1, q)$▫ in ▫$(2, 2)$▫.
Keywords:kvaternionske potenčne vrste, bistopenjsko polne funkcije, Hammingov graf, linearno neodvisni kvaternionski monomi


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica